
Appearing in the IEEE International Conference on Robotics and Automation, 2013.
This copy is for personal use only.

978-1-4673-5643-5/13/$31.00 © 2013 IEEE
Prints are available at http://dx.doi.org/10.1109/ICRA.2013.6630635.

Learning a Dictionary of Prototypical Grasp-predicting Parts
from Grasping Experience

Renaud Detry Carl Henrik Ek Marianna Madry Danica Kragic

Abstract— We present a real-world robotic agent that is
capable of transferring grasping strategies across objects that
share similar parts. The agent transfers grasps across objects
by identifying, from examples provided by a teacher, parts
by which objects are often grasped in a similar fashion. It
then uses these parts to identify grasping points onto novel
objects. We focus our report on the definition of a similarity
measure that reflects whether the shapes of two parts resemble
each other, and whether their associated grasps are applied
near one another. We present an experiment in which our
agent extracts five prototypical parts from thirty-two real-world
grasp examples, and we demonstrate the applicability of the
prototypical parts for grasping novel objects.

I. INTRODUCTION

This paper addresses the problem of robotic grasp plan-
ning. We present a method that allows a robot to compute,
from a single object snapshot produced by a Kinect camera,
the position, orientation, and preshape to which it needs to
bring its manipulator in order to grasp the object. A sub-
stantial challenge in grasp planning is to generate workable
finger placements while one finger or more must unavoidably
be applied onto surfaces that are behind the object, and
thus not perceived by the robot. To address this problem,
planning algorithms usually exploit prior object knowledge
in order to postulate the shape of occluded regions and
devise a workable strategy. For instance, when working in
controlled environments, we can provide robots with 3D
shape models and grasp parameters for every object. From a
single snapshot, the robot can recognize and estimate object
poses, which leads to a reconstruction of occluded faces and
the generation of accurate grasps. However, when robots are
deployed in uncontrolled environments such as houses or
hospitals, hard-coding grasping strategies for every object
that the robot may encounter quickly becomes unpractical.
In order to work with unknown objects, assumptions on
shape regularity, such as symmetry [7], [22], [39], may
be used to fill occluded regions and properly formulate
finger placements. Unfortunately, there is no guarantee on
the extent to which such assumptions apply.

In order to overcome the limitations associated to hard-
coded means of predicting 3D shapes, authors have increas-
ingly looked for means of extracting from experimental data
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Fig. 1: Transferring grasps to novel objects. From grasps
demonstrated on a set of training objects (Figures (a) and
(b)), the agent extracts a dictionary of prototypes (Figure
(c)). These prototypes allow the agent to grasp novel objects
that are partly similar to the training objects, such as those of
Figure (d). Figure (e) shows an example of the application
of the fifth prototype to an object whose global shape is
unlike any of the training objects, but that present a part that
resembles the fifth prototype.

a mapping that links visual cues to grasp parameters. This
way, a robot can acquire experience and progressively learn
to grasp new kinds of objects [10], [23], [31], [33].

In this paper, we present a method that allows a robot
to learn to formulate grasp plans from visual data obtained
from a 3D sensor. Our method relies on the identification
of prototypical parts by which objects are often grasped. To
this end, we provide the robot with means of identifying,
from a set of grasp examples, the 3D shape of parts that
are recurrently observed within the manipulator during the
grasps. Our approach effectively compresses the training
data, generating a dictionary of prototypical parts that is
an order of magnitude smaller than the training dataset.
As prototypical parts are extracted from grasp examples,
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each of them automatically inherits a grasping strategy that
parametrizes (1) the position and orientation of the manip-
ulator with respect to the part, and (2) the finger preshape,
i.e., the configuration in which fingers should be set prior to
grasping. When a novel object appears, the robot tries to fit
the prototypical parts to a 3D snapshot (e.g., from a Kinect)
that partially captures the object. The grasp associated to the
part that best fits the snapshot can be executed to manipulate
the object. In effect, fitting prototypes implicitly postulates
the object shape in occluded regions, allowing the robot to
formulate finger placements that match all sides of the object.

Through this work, we argue that it is critical to take
both visual data and grasping experience into account in the
process of defining grasp-predicting shapes. Parsing objects
into parts has been a topic of interest in computer vision
for decades [8], [18], [19]. It thus appears tempting to tap
into that literature in order to define parts to which we may
later-on associate grasps. Contrary to this line of thought,
we argue that a part decomposition that is suitable for object
recognition is not necessarily suitable for grasp prediction.
Instead, we aim to let prototypical parts emerge from both
object shape and grasp examples. A key effect is that the
shape and the spatial extent (or size) of the prototypes
generated by our method directly result from the available
grasp data. Our approach involves an explicit search for
recurrent patterns within the agent’s visuomotor experience,
which leads to the identification of parts that directly predict
grasp applicability.

Figure 1 illustrates the concept of our method. The robot
is first taught, via teleoperation, to grasp the objects of
Figure 1a, as shown in Figure 1b. From these data, the robot
generates the dictionary of prototypes shown in Figure 1c.
It can then devise grasping strategies for novel objects that
partly resemble those of the training set, such as the objects
in Figure 1d. Figure 1e shows a grasp suggested by fitting
the fifth prototype onto a lamp.

The main contribution of this paper is the application
of our method to real-world data. Our previous work [14]
included a proof-of-concept experiment on synthetic data,
where only the learning of parts was demonstrated. In this
paper, we present an experiment where the agent computes
a set of prototypes from real-world grasps demonstrated by
a teacher, and we test the resulting model by executing 55
grasps on a real-world robot platform. In order to manage the
variability of real-world data, we developed a new method
for computing prototypical parts. The second contribution of
this paper is a new part similarity measure that allows the
robot to identify parts that have a similar shape, while being
robust to a certain amount of variation in the absolute pose
of each part, as grasps demonstrated on similar parts will
often present slightly different approach vectors. Finally, this
paper details the procedure that allows us to align prototypes
to partial 3D snapshots in order to grasp new objects.

II. RELATED WORK

In robotics, mainstream grasp planning has traditionally
relied on force analysis [6], [37]. Force analysis exploits

object shape models, possibly augmented with frictional and
inertial parameters, to compute through the application of
the laws of mechanics whether the net force applied by a
manipulator onto an object is sufficient to bind the object to
the manipulator. It has been shown that force analysis can be
integrated into action-perception loops to implement useful
behaviors [2], [27]. Unfortunately, this approach suffers from
a number of shortcomings. As it requires 3D models of the
objects that need to be grasped, it cannot directly handle
novel objects. Moreover, finding an optimal grasp in the
force-analysis sense is computationally expensive.

Methods that provide a more direct link from visual
perception to grasp parameters have soon emerged and
become increasingly popular. Several groups have developed
algorithms that compute grasp parameters from a single view
of an object [26], [32]. Instead of hard-coding the function
that computes grasp parameters from vision, other authors
have looked into vision-action policies whose parameters are
learned from experimental data [10], [23], [31]. This way,
grasp-related object properties can be captured implicitly
through interaction.

Authors have studied the association of grasping strategies
to various kinds of visual cues. Grasps associated to local
visual features [33], [30] have the advantage of being easily
transferable across objects, as many objects share similar
components. However, local features suffer from a poor
geometric resolution, which makes it difficult to accurately
compute the 6D pose of a gripper, let alone finger preshape
parameters. Conversely, grasps associated to a model of a
whole object [11], [15], [20] benefit from increased geomet-
ric robustness, but the resulting models are less likely to
apply to novel objects. Authors have explored this trade-off
between transferability and robustness by associating grasps
to object parts of varying size [1], [4], [13], [14], [17],
[21], [24], [29], [38], [40]. Miller et al. [29] have manually
constructed a set of shape primitives (cone, sphere, cube,
etc.) and associated grasping parameters, and demonstrated
in their GraspIt! simulator that fitting the shapes to novel ob-
jects allows the robot to quickly generate workable grasping
strategies. Sweeney et al. [38] have defined grasp-predicting
parts by parsing objects into sets of ellipsoidal primitives.
With the advent of cheap 3D sensors, methods based on 3D
data have started to flourish [14], [21], [28], [40]. Kroemer
et al. [28] presented a part-based model of grasp and task
parameters, where both the shape of a 3D part, and the
trajectory the robot needs to follow, are encoded. Herzog
et al. [21] and Zhang et al. [40] presented two data-driven
approaches where a part describes the object shape in a fixed-
size region around a grasping point, and each grasp example
yields a part. By contrast, in our work, a grasp example
only “votes” for the potential inclusion of a prototype into
the dictionary, which provides us with a means of controlling
the size of the dictionary in order to keep the computational
cost of planning a grasp onto a novel object reasonably low.

An important distinctive point of our work is that, as in
our previous work [13], [14], [17], we provide the agent with
means of optimizing the transferability-robustness trade-off



Fig. 2: Grasp preshapes. In this work, grasps are executed by
setting the manipulator to either one of a parallel (first image)
or cylindric (third image) preshape, then closing the fingers
towards a goal configuration (second and fourth images) until
resistance is encountered.

mentioned above, by allowing it to select prototypical parts
of varying size, depending on their occurrence statistics in the
training database. The result is a compact dictionary of parts
that lend themselves to grasping. This paper goes beyond our
previous work [14] by providing: (1) a novel shape similarity
measure that is robust to local pose variations, (2) a clustering
approach that works directly in the space induced by the
similarity measure, and (3) an experiment that shows the
applicability of our work to real-world data.

III. METHOD

The concept of our approach is to identify, within the
agent’s visuomotor experience, recurrent associations of ob-
ject parts and successfully executed grasps. We proceed
as follows. We first collect a number of grasp examples.
From each example, we segment parts of varying sizes in
the vicinity of the point at which the grasp is applied. We
then compute pairwise similarities between all the resulting
part candidates. Pairwise similarities allow us to identify
dense clusters of similar parts, i.e., parts that are shared by
multiple objects. We select the central part of each cluster.
These parts, along with their corresponding grasp parameters,
altogether form a dictionary of prototypes that will later be
used to suggest grasps onto novel objects. As only cluster
centers are selected, we are able to limit the dictionary to a
size that is an order of magnitude smaller than the number
of initial grasp examples.

A grasp prototype is composed of a shape model, in
the form of a point cloud, along with the corresponding
wrist pose and hand preshape. A novel object is grasped
by aligning the prototypes to a 3D snapshot of the object.
The grasp parameters of the prototype that best fits the
snapshot are used to execute a grasp. A grasp is executed by
bringing the manipulator to the correct pose and preshape,
then closing the fingers to apply a fixed force onto the
object. In this paper, we consider two different preshapes,
that we refer to as parallel and cylindric (see Figure 2).
We emphasize that although grasps begin in either of these
two preshapes, the final finger positioning is not limited to
two configurations. Instead, the compliance of the hand to
an object’s shape yields a different finger configuration for
each object.

A. Grasp Examples

Our method is trained with a set of grasp examples. Each
example is composed of the 3D shape model of the object

being grasped, the 6D pose of the object, the 6D pose of
the manipulator’s wrist at the time of the grasp, and the
preshape to which the manipulator was set prior to the grasp.
We assume that the objects used for training are known to
the robot, therefore full 3D shape models are available for
these. We note that while our method requires full 3D surface
models for training, it is applicable to grasping new object
for which only a partial 3D snapshot is available.

B. Part Candidates

The first step of our approach is to generate a set of
part candidates, by segmenting shapes of various size near
grasping points. Generating object segments amounts to
sampling the space of possible parts. Sampling this space
is necessary, as analyzing the space of parts continuously
would be computationally prohibitive.

Part candidates are generated by segmenting objects along
a set of predefined box-like regions of interest (ROIs). These
ROIs are predefined by hand. Each grasp preshape constrains
the shape of the object being grasped. For instance, a
cylindric preshape would not be applicable to an object that
is elongated in a direction parallel to the wrist of the hand.
As a result, we define ROIs separately for each preshape.
In this work, we consider three different ROIs for both the
parallel and cylindric preshapes.

Our next step is to search for recurring shapes within the
part candidates. To this end, we first define a measure of dis-
similarity between parts (Section III-C). This measure then
allows us to identify groups of similar parts, by clustering
part candidates in the space induced by our dissimilarity
measure (Section III-D).

C. Similarity Measure

This section presents a measure of the similarity between
pairs of part candidates. Intuitively, the measure reflects
whether the shapes of two parts resemble each other, and
whether their associated grasps are applied at the same
place. In this sense, a candidate composed of a cylindric
part associated to a sideways grasp would not be similar
to another candidate composed of the same cylindric part
associated to a top grasp. We note that grasp preshapes also
play an important role in prototyping. Preshapes could be
taken into account in the similarity measure, marking grasps
that have different preshapes as clearly dissimilar. This is
however not the idea followed in this paper. Instead, as
explained in the next sections, we separate the data that
correspond to different preshapes and cluster them separately.

The similarity between two part candidates is computed by
expressing the point clouds of the two parts in the reference
frames defined by the associated grasps, and computing how
closely their surfaces match. In this way, we simultaneously
compute whether the part shapes and their poses relative to
the manipulator are similar.

Let P = {ai}i∈[0,n] and Q = {bi}i∈[0,m] denote the
point-cloud representations of two parts, with all ai’s and
bi’s belonging to R3. To the end of defining the similarity
between P and Q, we define object-surface distributions



φP (x) and φQ(x) from P and Q [16]. The value of φP
(resp. φQ) at a given point x ∈ R3 is inversely proportional
to the distance between x and its closest neighbor in P (resp.
Q). Object-surface distributions are essentially computed by
centering a Gaussian function onto each input datapoint, and
summing the Gaussians. The similarity between two parts is
then expressed by

s∗(P,Q) =

∫
R3

φP (x)φQ(x)dx, (1)

which produces values in [0, 1]. This expression is solved
by Monte Carlo integration [9], averaging values of P (x) at
points drawn randomly from Q(x)

s∗(P,Q) ' 1

M

M∑
i=1

φP (xi) with xi ∼ φQ(x). (2)

For further details on Monte Carlo integration, we refer the
reader to our previous work [13]. Additionally, an implemen-
tation of s∗ is publicly available online [12].

The similarity s∗ defined above could potentially be used
for our purpose. However, this measure is highly sensitive
to the relative pose of the parts with respect to their grasp.
Although we wish for two cylinders grasped from the top
and side to appear as dissimilar prototypes, our measure does
need to account for some variation in the part-grasp relative
pose. For example, although a sideways grasp onto a cylinder
should ideally approach along a vector that is perfectly
perpendicular to the cylinder’s surface, in practice, there will
often be some deviation. Consequently, our measure needs
to allow two part candidates with a slight relative part-grasp
deviation to still appear similar. To this end, we define a
second similarity measure that is computed by considering
the similarities s∗ between P and a number of parts Qi,
where Qi is generated by applying a small random pose
transformation to Q. Small pose perturbations are computed
by applying a rotation and translation drawn from zero-mean
isotropic distributions on SO(3) and R3. Random rotations
r̂ are drawn from the Von Mises-Fisher distribution centered
on the identity rotation. The Von Mises-Fisher distribution
is the SO(3) equivalent of a Gaussian. Its expression is
proportional to

v(r) = eσr q
T r + e−σr q

T r, (3)

where q is a unit quaternion that corresponds to the identity
rotation, and σr is a bandwidth parameter that is set in
our experiments to produce rotations mainly distributed in
the range [0◦, 10◦]. Random translations are drawn from
an isotropic trivariate Gaussian of zero mean and standard
deviation σt. In our experiments, σt is set to five centimeters.
These parameters have been chosen by inspection of our data
(Section IV). Their value needs to be set proportionally to
the variance in the poses of the grasps demonstrated to the
robot.

As the next section requires a set of pairwise
dissimilarities, we define the dissimilarity between P and

Q with

d(P,Q) =
(
1−max

{
s∗
(
P, Tt̂i,r̂i (Q)

)}`
i=1

)p
, (4)

where t̂i’s and r̂i’s correspond to random translations and
rotations generated as explained above, and T operates a
rigid transformation by first rotating then translating Q by r̂i
and t̂i. The parameter p is a positive exponent which allows
us to globally influence the transferability-robustness trade-
off. Values smaller than 1 will only allow very similar parts to
be near each other in the space induced by d. Values greater
than 1 will encourage generalization, by allowing slightly
different parts to be near each other in the space induced by
d. In our experiments, p is set to 2.

We note that s∗ is similar in spirit to the dissimilarity
measure presented in our previous work [14]. The contribu-
tion of this paper lies in Eq. 4, which is explicitly robust
to pose variations. Applying either s∗ or the dissimilarity
measure presented in our previous work [14] directly to the
real-world problems studied below made similar parts appear
dissimilar, due to small differences in the placement of the
robot’s hand with respect to the objects. This approach led
to no meaningful results. By contrast, the measure of Eq. 4
lead to positive results, as demonstrated in Section IV.

By contrast to traditional surface-alignment methods such
as ICP [5], the method above penalizes transformations
proportionally to their amplitude (as defined by the Euclidean
distance to (0, 0, 0) and the geodesic distance on the unit-
quaternion sphere to the identity rotation). In other worlds,
we limit the pose transformation search space to a region
centered on the identity transformation. An implementation
of the measure presented in this section is publicly available
online [12].

D. Prototypes

Our aim of is to construct a compact dictionary of pro-
totypical graspable parts. We wish to find prototypes that
generalize over objects but still span a representation with
sufficient expressive power. We proceed similarly to our
previous work [14].

Given a set of parts {Pi}i∈[1,p], we can compute the
dissimilarity between each pair of parts Dij = d(Pi, Pj).
In order to proceed, we assume that the measure is close to
metric for the subspace spanned by the training data. This
allows us to, in a two stage process, recover a geometric
representation. First, we convert the dissimilarity matrix D to
an inner-product matrix K, through application of the kernel
trick [34], [14]. Second, we compute the best positive semi
definite approximation of K under the Frobenius norm,

Ĉ = argminC||K−C||2F. (5)

The above can be solved in closed form through a simple
eigenvalue decomposition. We note that this procedure is al-
most identical to our previous work [14], with the difference
that C is not constrained to rank two anymore.

Having resolved a geometrical representation of the data
we wish to partition the space in such a manner that we



can discover atomic classes of grasps independent of object
type. We cluster the data with a graph-based/normalized-cuts
approach [36] applied to the matrix Ĉ, which allows us to
compute partitions without making assumptions about the
structure of each cluster. We refer the reader to our previous
work for more details on this method [14].

E. Grasping Novel Objects

In order to grasp a novel object, the agent captures a 3D
snapshot of the object and compares is to the prototypes
it has acquired. The prototype that best fits the data is
selected to parametrize the position, orientation and preshape
of the grasp. Once the manipulator is set to the intended
configuration, its fingers are closed until they apply a fixed
force onto the object.

Prototypes are aligned to the object snapshot using a
sample-based pose estimation method [16]. The method
works by exploring the space of possible prototype poses
(t, r) in search for the pose that maximizes the surface
similarity measure discussed above (1). Additionally, we
exploit our knowledge of the placement of fingers onto
prototypical parts to prevent the selection of poses that would
lead fingers to collide with the surfaces captured by the
snapshot (including the table), and we exploit our knowledge
of arm kinematics to prevent selecting unreachable grasps.

Let us denote by Tt,r(·) a function that transforms its
argument by applying to it a rotation r followed by a
translation t. Let us denote by S the point cloud obtained
from a 3D snapshot, by P the point cloud of a prototype,
and by B a collection of 3D boxes that cover the volume
occupied by the robot’s fingers in the grasp from which the
prototype was learned. We define the reachability of a grasp
pose (t, r), given the snapshot S, as

Rt,r (B,S) =

{
1 if S ∩ Tt,r(B) = ∅ and ∃ IKt,r,
0 else,

(6)
where ∃ IKt,r denotes whether there exists an inverse kine-
matics solution for grasp pose (t, r). The collision-free, best-
fitting prototype pose is given by

argmax(t,r)s
∗ (Tt,r (P ) , S)Rt,r (B,S) . (7)

Its value is computed via simulated annealing [25] on a
Markov chain [3] whose invariant distribution is an in-
creasing power of s∗ (Tt,r (P ) , S)Rt,r (B,S). The chain
is defined with a mixture of two local- and global-
proposal Metropolis-Hastings transition kernels. Intuitively,
the method alternates between a hill-climbing policy that
reveals local pose maxima, and random jumps in the pose
space that allow multiple local maxima to be discovered.

The prototype that yields the highest surface similarity (7)
is used for grasping the object.

IV. EXPERIMENT

This section presents an experiment that demonstrates the
applicability of our approach on a real robot platform. The
results of the experiment are: (1) a dictionary of parts learned

Fig. 3: Teaching a grasp to the robot. The second image
shows a 3D snapshot of the grasp, taken with a Kinect
camera. The third image shows the object model aligned
to the correct pose, and the pose of the gripper.

from grasps demonstrated to the robot (Section IV-A), and
(2) the exploitation of this dictionary to grasp novel objects
(Section IV-B).

A. Dictionary of Prototypes

The objects used for training the robot are presented in
Figure 1a. In general, our method assumes that the robot
knows the training objects, which means that it has full 3D
shape models of all of them. (We naturally do not make
the same assumption for the new objects that the robot
subsequently grasps.)

Our robot is composed of a Schunk three-finger hand
mounted on a Kuka arm, and a Kinect camera that is fixed
on a structure 1.5m away from the robot.

We demonstrated thirty-two grasps to the robot. We pro-
ceeded by first instructing the robot to set its hand to either
a parallel or cylindric preshape (see Figure 2). We then
placed one of the objects in the hand, and instructed the
robot to close the hand and take a 3D snapshot of the
grasp with the Kinect camera. For each snapshot the model
of the object was aligned to the correct pose, using the
pose estimation method described above [16]. This process
resulted in a representation of each grasp in terms of the
gripper pose, obtained from forward kinematics, the gripper
preshape before the grasp, and a full 3D shape model of the
object being grasped (see Figure 3).

From the 32 grasps, we generated 96 part candidates,
following the procedure of Section III-B. We then computed
pairwise similarities between the 81 parallel-preshape can-
didates and between the 15 cylindric-preshape candidates,
and we applied the clustering algorithm of Section III-D to
these data. Computing part similarities took 25 minutes with
a single-threaded C++ implementation on an Intel Core i7
processor. Clustering the data took about a second.

We inspected the results generated with different numbers
of clusters. For the parallel-preshape data, the most sensible
result was obtained with three clusters. The first cluster
contained side grasps on the cylindric objects of Figure 1a.
The second cluster contained grasps on the white and pink
objects, whose shape lies between a cylinder and a box. The
third cluster contained grasps on the box-like objects. For
the cylindric preshape data, two clusters best captured the
nature of the data, separating it into top grasps onto the two
cylindric objects, and grasps applied to the cap of the blue
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Fig. 4: Two-dimensional approximation of the geometric
configuration of part candidates. The distance between two
points in these plots approximates the dissimilarity of the
two corresponding parts. Colors correspond to the labels that
result from the clustering process performed on the pairwise
similarities. The black dots are the cluster centers from which
the prototype dictionary is constructed.

Success Firm 39 (70%)
Loose 7 (13%)
Total 46 (84%)

Failure 9 (16%)

TABLE I: Grasp success rates. Loose successful grasps
correspond to grasps for which the object moved during lift-
up. See text for details.

and pink bottles. We note that although we determined the
numbers of clusters by inspection, for larger datasets a BIC-
like criterion that computes an optimal number of clusters
from the data could be used instead [35].

Figure 4 shows a 2D approximation of the space in-
duced by the shape dissimilarities between parts. This ap-
proximation is obtained by keeping only the two principal
components of the data. We see that the clusters look
approximately Gaussian. In order to compress the data into a
compact dictionary of prototypes, we model each cluster as a
Gaussian and use its center as the prototype. The dictionary
of prototypes is shown in the topside of Figure 4.

B. Grasping Novel Objects

To grasp an object, the robot took a 3D snapshot with the
Kinect camera, and aligned the five prototypes of Figure 4
to it. Aligning the five prototypes by solving Eq. 7 five times
took 90 seconds on average on an Intel Core i7 CPU. The
grasp parameters of the prototype that best fitted the snapshot
were used to execute the grasp. The grasp was executed by
bringing the manipulator to the correct pose and preshape,
then closing the fingers to apply a fixed force onto the object.

Results are presented in Table I. The robot planned 55
grasps on the object of Figure 1d. Our main criterion of
success is whether the robot manages to apply its fingers on

the object in a way that blocks the object between the fingers.
Out of the 55 grasps, 46 were successful. We note that for
7 of these, the force applied to the hand by the object while
the robot was lifting it up was strong enough to make the
object slip in the hand (5 grasps) or even fall (2 grasps). We
emphasize that the goal of this work is to plan grasps that
locally match an object’s shape. Taking inertial parameters
into account to favor grasps applied, e.g., near the center of
mass of an object, is a problem that we plan to address in
future work.

Figure 5 shows examples of grasps. Figure 5a shows a
typical grasp, where a cylindric prototype is fitted to a bottle.
In Figure 5b and Figure 5c, the shapes of the dustpan and
kettle and are unlike any of the objects of the training set.
The grasps generated by the closest matches did work, which
reveals the robustness of the method. A more elegant solution
to these two cases would however come from realizing that
the two objects present cylinder-like parts, albeit of different
radii. The prototype associated to a cylinder could then be
scaled to the proper size, and the corresponding grasp would
be better adapted to the object. Such a behavior is however
beyond the scope of this paper and we leave its discussion
to future work.

Figure 5d shows more examples of successful grasps.
In the third image, the electric cable prevented the robot
from planning a side grasp on the handle. Instead, the robot
grasped the work lamp by its top by transferring a bottle-top
grasp (see for instance Figure 1b). The same situation occurs
in the last image of Figure 5d, where the lampshade was out
of reach, and the lamp pole doesn’t match any prototype.
Again, the robot adapted a cylindric bottle-top grasp to the
top of the lamp (we note that the fingers are in a cylindric
preshape in the fifth and sixth images). Figures 5e to 5g show
examples of failed grasps. In Figure 5e, the dustpan is laying
upside-down on the table. This is a difficult configuration,
where side grasps would make one of the fingers pass close
to the table. Given that the robot rejects all grasps that risk
colliding with the table, its only plan hallucinates a cylinder
above the dustpan. In the next image (Figure 5f), the robot
had correctly aligned a cylindric part to the hose connector.
Unfortunately, one of the fingers collided with the back
side of the left-ward connector while the hand was closing,
making the object fall. This kind of problem would be hard
to solve with only one view of the object. Addressing it
would require the robot to turn its camera around to view
all sides of objects. In Figure 5g, the robot matches the
bottom part of a cylindric prototype to the brush container.
However, the container is shorter than the prototype, and
the fingers miss the object. This is a problem that we can
address, in two different ways. The first solution would be to
increase the training dataset to include objects of the size of
the brush container. The second solution would be to force
the robot to match all of the prototype surfaces that should
be visible from the camera viewpoint to surfaces obtained
from the Kinect. This way, the robot would make sure that
the prototype completely fits the side of the object that faces
the camera.



We note that our method is applicable to environments
with multiple objects (see Figure 5a). The only differences
with an environment that contains only one object are that
(1) there may be occlusions that make grasping some of the
objects more difficult, and (2) when two small objects stand
next to each other, our method may fit a bigger prototype
to the surface formed by both objects. We leave a longer
discussion of these issues to future work.

V. CONCLUSION

We presented a robotic agent that is capable of transfer-
ring grasping knowledge across partly similar objects. Our
method relies on the identification of recurring parts within
sets of part candidates generated by extracting object surface
segments in the vicinity of grasps demonstrated by a human.
We devised a similarity measure that allows the agent to
identify parts that have a similar shape, while being robust
to a certain amount of variation in the absolute pose of
each part. In a real-world experiment, our agent learned
a dictionary of prototypical parts from parallel-finger and
cylindric grasps demonstrated on eight different objects. The
dictionary allowed the robot to devise workable strategies
for real-world novel objects whose global shape differs from
that of any of the training objects.

As the dictionary of parts is only formed from cluster
centers, it is allowed to be orders of magnitude smaller than
the set of grasp examples initially provided to the agent. A
grasp example only “votes” for the potential inclusion of
a prototype into the dictionary, which provides us with a
means of controlling the size of the dictionary in order to
keep the computational cost of planning a grasp onto a novel
object reasonably low. Finally, not only the shape, but also
the spatial extent (or size) of the parts that form the dictionary
depend on the available grasp data. Prototypical parts are
selected based on their recurrence across experienced grasps,
which leads to the identification of parts that strongly predict
grasp applicability.
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