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Abstract

The ability to perform automatic recognition of human gender is important for a
number of systems that process or exploit human-source information. The outcome
of an Automatic Gender Recognition (AGR) system can be used for improving
intelligibility of man-machine interactions, annotating video files or reducing the
search space in subject recognition or surveillance systems. In the previous stud-
ies, the AGR systems were typically based on only one modality (audio or vision)
and their robustness in real-world scenarios was seldom considered. However, in
many typical applications, both audio signal and visual signal are available. Ideally,
an AGR system should be able to exploit both modalities to improve the overall
robustness. In this work, we develop a multi-modal AGR system based on audio
and visual cues and present its thorough evaluation in realistic scenarios. First,
in the framework of two uni-modal AGR systems, we analyze robustness of dif-
ferent audio features (pitch frequency, formant and cepstral representations) and
visual features (eigenfaces, fisherfaces) under varying conditions. Then, we build
an integrated audio-visual system by fusing information from each modality at the
classifier level. Additionally, we evaluate performance of the system with respect to
quality of data used for training the system. We conducted the AGR studies on the
BANCA database. In the framework of the uni-modal AGR systems, we show that:
(a) the audio-based system is more robust than the vision-based system and its
resilience to noisy conditions is increased by modelling only voiced speech frames;
(b) in case of audio, the cepstral features are superior to the pitch frequency and
formant features, and in case of vision, the fisherfaces outperforms the eigenfaces;
(c) for the cepstral features, modelling of higher spectral details and the use of both
static and delta coefficients makes the system robust towards noisy conditions. The
integration of audio and visual cues yields a robust system that preserves the perfor-
mance of the best modality in clean conditions and helps in improving performance
in noisy conditions. Finally, the multi-conditional training (clean+noisy data) helps
in improving performance of the visual features and, consequently, the recognition
rate of the audio-visual AGR system.
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Chapter 1

Introduction

The ability to perform automatic recognition of human gender is crucial for
a number of systems that process or exploit human-source information. Typical
examples are information retrieval, human-computer or human-robot interaction.
The outcome of an Automatic Gender Recognition (AGR) system can be used for
generating meta-data information useful for annotating audio and video files. More-
over, gender is an important cue that can be exploited for improving intelligibility
of man-machine interaction, or simply, for reducing the search space in applications
such as speaker recognition or surveillance systems.

The problem of AGR has been addressed in the past by several authors (see
Section 1.1) using only one modality (audio or vision). The investigations were
performed mainly under clean conditions and the robustness of AGR systems in
real-world scenarios was seldom considered. However, in many typical applications,
both audio and vision are available. Ideally, an AGR system should be able to
exploit both modalities to improve robustness. Since each modality has different
characteristics, audio-visual cues can provide a more comprehensive description of
a subject than a single modality. Finally, integration of the cues may yield a AGR
system that is resilient to the degradation of both, or even to temporal unavailability
of one of the input signals.

The goal of this work is to develop a multimodal AGR system based on audio
and visual cues that is to be robust under varying conditions that occur in realistic
scenarios.

1.1 Related Work

In this section, the previous work on automatic gender recognition is briefly
reviewed. More information about methods and results obtained in the previous
studies can be found in Chapter 2.

The previously proposed solutions to the AGR problem were based on single
modality, i.e. either on audio or vision. The first works on audio-based AGR
mainly aimed at identifying appropriate features of speech signal for the task. In
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2 CHAPTER 1. INTRODUCTION

particular, comparison of voice source- (pitch frequency) and vocal tract-related
features (first four formants with their respective frequency, amplitude and band-
width) for ten vowels extracted from the clean-condition speech data was presented
in [10]. Further analysis of different parametric representations of speech signal
(linear prediction, autocorrelation, reflection and cepstral) was performed on the
same database for vowels, voiced and unvoiced fricatives [69]. The evaluation of
mel-cepstral features for different groups of phonemes like vowels, nasal, liquids
etc. was conducted in [18]. More recently, the comparision of different types of
classifiers (such as nearest neighbor classifier, Support Vector Machine (SVM)) for
the cepstral coefficients was presented on high quality recordings from the ISOLET
corpus [68].

Early research in vision-based gender recognition was focussed upon the use
of artificial neural networks for feature extraction and classification on clean con-
dition data [13, 20]. Subsequently, the applicability of geometrical features (such
as eyebrow thickness or nose width) indicated by psychological studies on gender
recognition by humans was verified [7]. Latest research looked into more complex
lighting and pose variations, and for larger sets of subjects, such as in the FERET
database [39]. The performance of different types of classifiers for the AGR task
based on visual cues was studied, such as the linear, quadratic, fisher linear discrim-
inant, k-nearest neighbor classifiers as well as the more complex techniques such as
SVMs or large ensemble Radial Basis Function (RBF) networks [39, 68]. In [68],
comparison of row data reprasentation with features obtained through principal
component analysis (PCA), referred to as eigenfaces [56], was made on database
consisting of frontal, un-occluded face images.

Motivations for this work can be found, inter alia, in limitation of the earlier
studies. First, the aforementioned researches utilized only one modality (audio or
vision). The comparison of the performance of audio and visual features presented
in [68] was done on different databases thus limiting the interpretation of the ob-
tained results. To the best knowledge of the authors, no solutions to the AGR
problem based on integrated audio-visual cues were published. Second, the investi-
gations were performed mainly under clean conditions and the robustness of AGR
systems in real-world scenarios was seldom considered for both audio and visual
cues.

1.2 Main Objectives
The main goal of this work is to develop an audio-visual AGR system that

can provide sufficient robustness under varying conditions that occur in realistic
scenarios. Typically, during studies on a multimodal AGR a number of issues can
be addressed, such as a choice of robust representation of the audio and visual
signal (feature selection), accurate classification method, efficient and effective cue
integration method or strategy of training. However, motivated by the previous
studies on the topic, in this thesis we focus on aspects related with selection of the
audio and visual signal representation and the audio-visual cue integration method.
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In particular, we would like to identify which audio and visual features will yield a
better AGR system and how much performance of the AGR system can be improved
by combining these two modalities in a realistic scenario. During the audio-visual
AGR studies, we address the following practical questions:

1. What is the effect of varying conditions on performance of different audio
and visual features? Which audio and visual features are the most robust in
realistic scenarios? Which parameters of particular features are crucial for
their robustness?

2. How does the choice of an audio-visual integration method influence perfor-
mance of the AGR system? What is the most effective and efficient method
of integrating audio and visual cues?

3. What is the effect of integrating audio and visual information on the AGR
system accuracy? How much does the audio-visual integration help improving
performance of the AGR system under varying conditions? How much are the
selected audio and visual features complementary? Which type of cues (audio
or visual) is more important in correct classification?

4. What is the effect of training data conditions on the AGR system accuracy?
Is a better strategy to train the AGR system on clean-condition or multi-
condition (clean+noisy) data?

The further objectives for the audio, visual and integrated audio-visual AGR studies
are stated in Sections 3.1, 4.1, and 5.1, respectively.

1.3 Contribution of the Thesis

In this thesis, we investigate an multimodal AGR system based on audio and
visual cues. First, in the framework of two uni-modal AGR systems, we analyze
robustness of different audio (pitch frequency, formant and cepstral representations)
and visual (eigenfaces, fisherfaces) features under varying conditions. Then, we
build an integrated audio-visual system by fusing information from each modality
at the classifier level and we study various cue integration methods. Additionally, we
evaluate performance of the system with respect to quality of data used for system
training. Our studies were conducted on the BANCA database [16] comprising
datasets of varying complexity, and in the basic setup, the AGR system was trained
exclusively on clean and tested on clean or noisy data. In the framework of the
uni-modal AGR systems, we show that:

• the audio-based system is more robust than the vision-based system and its
resilience to noisy conditions is increased by modelling only voiced speech
frames;
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• in case of audio, the cepstral features are superior to the pitch frequency
and formant features, and in case of vision, the fisherfaces outperforms the
eigenfaces;

• for the cepstral features, modelling of higher spectral details and the use
of both static and delta coefficients makes the system robust towards noisy
conditions.

The integration of audio and visual cues yields a robust system that preserves the
performance of the best modality in clean conditions and helps in improving per-
formance in noisy conditions. Finally, the multi-conditional training (clean+noisy
data) highly improves performance of the visual features and, in consequence, the
recognition rate of the audio-visual AGR system. The selection of the audio and
visual features and integration of the multi-modal cues result in the resilient AGR
system applicable in practical applications.

1.4 Outline
The thesis is organized as follows. Chapter 2 formulates the task of automatic

gender recognition as a pattern recognition problem, presents consecutive parts of
the uni-modal AGR systems with focus on selection of audio and visual features, and
finally, discusses different cue integration methods and presents architecture of the
audio-visual AGR system. The experimental studies on the AGR problem for audio,
visual and integrated audio-visual cues are presented and discussed in in Chapter 3, 4
and 5, respectively. These chapters have similar structure. First, motivation of
the studies is discussed and the main objectives are defined. Then, experimental
setup is specified and, finally, the results obtained under varying conditions are
presented and discussed. The thesis is summarized with conclusions and suggestions
for further work in Chapter 6 and supplemented with the description of the BANCA
database in Appendix A.

Publication Parts of the work presented in this thesis has appeared in the fol-
lowing publications:

• M. Pronobis and M. Magimai.-Doss. Integrating audio and vision for robust
automatic gender recognition. IDIAP Technical Report, Idiap-RR-73-2008,
Idiap, November 2008 [50].

• M. Pronobis and M. Magimai.-Doss. Analysis of F0 and cepstral features for
robust automatic gender recognition. IDIAP Technical Report, 2009 [51].



Chapter 2

Automatic Gender Recognition

This chapter discusses the problem of Automatic Gender Recognition (AGR)
and presents an architecture of an audio-visual AGR system. Section 2.1 formu-
lates the task of automatic gender recognition as a pattern classification problem.
Further, the motivation for choosing audio and visual modalities as a source of in-
formation about a subject is provided. In designing the audio-visual AGR system
a two-step approach is adopted. First, the two modalities are studied separately
by building uni-modal AGR systems, namely the audio-based and the vision-based
AGR systems. The overview of an architecture of the uni-modal AGR systems is
presented in Section 2.1.1. The feature selection from the point of robustness un-
der varying conditions is discussed for both audio and visual signal in Sections 2.2
and 2.3, respectively. In Section 2.4, different types of classification methods are
discussed and a description of the classifier used in the system, the Support Vector
Machine (SVM), is provided. Finally, the two uni-modal systems are integrated to
provide the final decision based on both modalities. Section 2.5 discusses details of
audio-visual AGR system based on classifier fusion approach.

2.1 Problem Statement

Automatic Gender Recognition (AGR) can be described as a process of identify-
ing subject’s sex given biometric information about a person. The idea is to assign
an unambiguous label: female or male to a subject based on information about
person’s individual attributes. The whole action should involve as little human
interaction as possible.

Although there exist large variations in physical appearance and behavior among
people of the same gender, all of them possess some characteristic features that
indicate their sex. Due to this fact, information about particular person, after
being captured by our senses and processed in a brain, may be used to assign an
unknown person to the one of gender categories, i.e. may be used to identify the
person as a female or male. The correct decision can not be made without some prior
knowledge about the typical features for each gender which constitute archetypes

5



6 CHAPTER 2. AUTOMATIC GENDER RECOGNITION

(typical models) of a female and of a male in our consciousness.
The problem presented above is a typical example of a pattern classification task

where a given object is assigned to one of the predefined categories (also referred
to as classes) given an observation. Each of the classes includes a group of items of
similar properties characterized by features and is represented by a model learned
from these features. A model can be seen as a description of the features that
are common within a class and different between classes. Another problem is to
define a proper structure of the model and to automatically train it, i.e. estimating
the values of the model parameters for each of the classes. The most important
properties of each class should be rendered and a constraint that all models have to
be distinguishable from each other should be fulfilled. This task can be solved by
introducing the so called training phase. A pre-collected set of samples also referred
to as training data is used to approximate the best parameters of the models.
If each sample in the training data was previously assigned to the classes, the
problem of supervised learning is considered. Otherwise, the class for each sample
has to be determined during training. Such approach is referred as unsupervised
learning or clustering. The system should be able not only to classify correctly the
training examples, but also new examples that will be introduced to the system
in the future. The ability to classify the novel patterns that were not available
in training data is known as generalization. Thus, in order to obtain models with
generalization properties an additional set of data (development set) that were not
used during training, i.e. in determining parameters of model, is employed. A
number of requirements have to be satisfied to ensure reliability of the estimated
prototypes. More detailed information regarding this topic can be found in [5, p. 2]
and [22, p. 65]. Given the trained model and unseen (test) sample, the recognition
process consists of feature extraction followed by matching against the model of
each class. The final decision is then based on the best matched class.

A gender of a subject belongs to external characteristics of an individual (sim-
ilarly to age or race) and is encoded in both physiological (such as fingerprint, iris
scan, DNA code, face or body image, voice pitch etc.) and behavioral (such as
signature, gait, typing rhythm, voice timbre and tone etc.) biometrics [28]. In con-
text of AGR problem, all biometrics can be graded with respect to: (a) a degree
of subject’s attention and cooperation which is needed to collect them, and (b) a
degree of differentiation between two genders which they provide. For example, a
gender of a subject can be rather poorly judged based on keystrok recordings, but
almost perfectly on a DNA sample and very well on subject’s voice recordings. At
the same time, some of the biometrical signals are relatively easy to collect like
e.g. audio or video recordings, where others required subject’s cooperation when
collected, such as fingerprints or DNA samples1. In this work, the AGR system
uses audio and visual signal that are non-intrusive and can well discriminate with
respect to gender.

1When subjects provide data voluntary.
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Figure 2.1. Overview of the architecture of the uni-modal AGR system.

2.1.1 Uni-modal AGR System

As mentioned in the previous section, the AGR system is based on two modal-
ities: audio and vision. In our approach, the two modalities are first studied sep-
arately by building uni-modal AGR system, namely audio-based AGR system (A-
AGR) and vision-based AGR (V-AGR) system. In this section the overview of the
uni-modal systems is given.

First, audio and visual information are extracted from a video file. The input
to the V-AGR is constituted by a series of images collected from a video which
capture a view of a subject. Images are processed sequentially by the system, one
by one. Similarly, the A-AGR works based on an audio signal containing recording
of a subject’s voice. The audio stream is divided into short frames (10 − 20ms) in
order to ensure stationary properties of the speech signal. The consecutive frames
are processed sequentially. In the proposed solution, two main assumptions are
made. First, the functionality of the AGR system is limited to gender recognition
of only a single subject at a particular time instance. This requirement excludes
from further consideration such phenomena and situations like cross-talking in the
audio system, or simply, occurrence of two or more people in an image. Second, the
V-AGR system exploits exclusively face images and no stature information is used.

Both A-AGR and V-AGR systems have similar architecture presented in Fig-
ure 2.1. Each of the systems consists of three parts performing the following func-
tions: (a) signal preprocessing, (b) feature extraction, and (c) classification. The
role of the signal preprocessing block is extraction of useful fragments of the signal.
Previous AGR studies using audio suggest that voiced phonemes are more discrim-
inative for gender than unvoiced phonemes [69, 18]. We use a speech/non-speech or
voiced/unvoiced speech detection to obtain the most informative parts of the signal
(the method used for voiced/unvoiced detection is described in Section 2.2.1). In
case of the V-AGR system, data preprocessing includes face detection, localization,
and finally segmentation.

The function of the second block is extraction of features from the preprocessed
signal that are good representation for gender classes. The feature extraction for
the A-AGR and V-AGR system is discussed in Sections 2.2 and 2.3, respectively.
Finally, classification of an instance to one of the two possible classes (female or
male) is performed. The classification module employs the same algorithm in case
of both A-AGR and V-AGR. The detailed description of classification method is
given in Section 2.4.
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2.2 Audio Features

In this section, we describe different acoustic features which automatically ex-
tracted from the speech signal offer good discrimination between genders, and at
the same time ensure robustness of an A-AGR system under varying conditions that
occur in realistic scenarios. We start with a short overview of the speech production
model, since it is essential to the discussion provided further in the section. Next,
we indicate a number of physiological factors that differentiate the female and male
voices, and specify their influence on the acoustic parameters of speech signal. Then,
the audio signal preprocessing operations are described. In Sections 2.2.1 and 2.2.2
different types of the vocal tract and the voice source related features are presented
and their application to AGR problem under varying conditions is discussed.

The vocal system instantiates sounds as air-pressure waves. Air-stream pushed
out from the lungs passes through the vocal folds which may work in one of following
modes: (a) vibrating i.e. the folds open and close rhythmically causing oscillations
of the air-stream; in this way voiced sounds are generated; (b) constantly open,
when unvoiced sounds are generated. Later, the air-pressure wave goes through
trachea and larynx to the oral, nasal or both cavities. The final shape of the sound
wave is formed by different positions and movements of articulators (tongue, teeth,
lips etc). The process of speech production, as shown in Figure 2.2, is modeled by
the system consisting of two components: voice (excitation) source which imitates
the influence of vocal cords, and time-varying filter which represents the effect of
the propagation of the sound through the vocal tract [67, p. 12]. The excitation
signal is generated by an impulse generator, a random number generator or a com-
bination of both, depending on whether the produced sound is voiced, unvoiced or
mixed voiced/unvoiced. The impulse generator is characterized by the fundamental
frequency of the vocal cords F0 (also called pitch frequency2). As mentioned before,
the sound wave is further formed during propagation through the trachea, larynx
and cavities. The structure of the vocal tract can be described by theory created for
the acoustic tube, where during propagation the air pressure waves resonate at dif-
ferent frequencies. The resonating frequencies are are called formants (F1-F4). The
human vocal tract shapes spectral characteristic of the excitation signal according
to the frequency response of the acoustic tube. Therefore, the digital filter may be
used to represent the influence of the passage of the sound through the vocal sys-
tem. Resonance frequencies of the acoustic tube (vocal tract) depend on the length
and shape of the tube as well as on whether it has open or closed ends. Therefore,
due to different configuration of the articulators during production different sound
(air pressure waves with different characteristics) are generated. However, even the
two acoustic waves of the same sound produced by the same person can not be
identical. The ’intra-speaker’ variations may be caused by the different physical or
mental states of the speaker. Considerably larger variation exists between acous-

2Pitch represents the perceived fundamental frequency of a sound.



2.2. AUDIO FEATURES 9

Figure 2.2. Model of speech production process presented by Oppenheim and
Schafer in [45, p. 512].

tic waves among different speakers for the same sound. In this case, the variation
mostly originate from the anatomy of the speaker’s vocal tract, but also depend on
other factors, such as speech style and speaking rate [27, p. 4].

Numerous studies have been conducted in order to indicate the factors that
differentiate the female and male voice, and in consequence, allow humans for very
precise and fast recognition of the speaker gender [12, 37, 52, 59]. Generally, the
factors are divided into the two main groups [69]:

1. objective factors, that can be directly measured, like physiological differences
in the structure of vocal organs;

2. subjective factors, that can be only psychophysically assessed, like perceptual
features of the voice.

A number of differences in anatomy of female and male vocal tracts were indicated.
The most important factor that differs the vocal tracts is their length. The ratio
between the total length of the female vocal tract to that of male is around 0.8 −
0.87 [17, 25]. Further, it was shown that the female larynx differs from the male in
vocal fold length, thickness, angle of the thyroid laminae, resting angle of the glottis
and vertical convergence angle in the glottis [62]. Regarding the perceptual features
of the voices, it has been found that the female voice is typically more breathy and
melodic than the male voice, and finally that females typically tend to speak faster
than males [30].

The above mentioned physiological and perceptual factors lead to differences in
acoustic feature parameters [17, 25, 30, 62, 69]. The factors relate to both the voice
source- and the vocal tract-related parameters, i.e. the dissimilarities are visable
both in the pitch period, voicing and amplitude of speech, as well as in the shape
of the short-term speech signal spectrum. More specifically, the female and male
voice differ in [10, 40, 62, 63, 69]:
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• typical value of the pitch frequency – the female pitch frequency is higher
than male; typical values for females range between 170-280Hz and for males
between 110-150Hz;

• location of formants for the same sound – the average female formant pattern is
said to be scaled upward in frequency by around 20% compared to the average
male formant pattern; furthermore, a scaling factor that relates values of the
formants for females and males is inversely proportional to the overall vocal
tract length;

• overall spectral shape and tilt – it has been shown that male vowels have nar-
rower formant bandwidths and less steeply sloping spectrum (around−12dB/octave)
compared to females;

• typical power of sound – women speak with a slightly weaker voice than men
(around 2dB);

and other different attributes, such as mean airflow, glottal efficiency or amplitude
of vibration that includes another scale factor of 1.2 that relates to overall larynx
size [63]. The reader may refer to detailed surveys of differences between female
and male voice in [10, 69].

Signal Preprocessing. First, the digital audio signal is pre-emphasized using
first order all-zero filter with the coefficient in the range of (0, 1). The goal of
this operation is to flatten spectrum of the signal to ensure the same amount of
information in the lower and higher parts of the characteristic. Next, the audio
stream is divided into short frames of signal. Due to the fact that the speech signal
is a non-stationary process, the standard signal processing tools (like e.g. Fourier
transform) can not be directly applied to the signal. However, since the shape of
the vocal tract changes slowly compared to the pitch period, it is reasonable to
assume a fixed characteristic of the filter in the speech production model (the signal
is considered as quasi-stationary) over a time interval on the order of 10−20ms [26,
p. 159]. The signal is then divided into short segments using a bank of overlapping
windows. In order to minimize the effect of the discontinuities at the edges of each
segment in the spectral domain, the Hamming window is typically used [27, p. 231]:

w(n) =
{

0.54− 0.46cos(2π(n−1)
N−1 ) for n ∈ (0, N − 1)

0 otherwise
. (2.1)

Finally, the speech/non-speech or voiced/unvoiced detection is applied. The speech/
non-speech segmentation is obtained by first training a Gaussian Mixture Model
(GMM) with two mixtures. The mixture with largest energy coefficient is labelled
as speech and the other as silence and then followed by the classification of the
frames. For the voiced/unvoiced detection, we use Robust Algorithm for Pitch
Tracking (RAPT) method based on cross-correlation and dynamic programing tech-
nique which is described in Section 2.2.1.
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2.2.1 Voice Source Related Features

It is a commonly known phenomenon that female and male voices differ in the
value of pitch frequency. As mentioned in Section 2.2, the typical value of pitch
frequency for females ranges between 170-275Hz and for males between 112-146Hz
under clean conditions [69]. This fact was utilized in the early research in audio-
based gender recognition which used the value of pitch frequency as a feature. The
discriminative role of the speaker pitch frequency of voicing was experimentally
confirmed for the clean speech data collected from 52 speakers in [10]. In further
studies, the pitch frequency value was combined with the information provided by
the acoustic analysis to identify the gender of a subject on the telephone speech or
artificially corrupted data [46, 58, 71]. However, a very limited number of works
was devoted to analyze the suitability of the pitch frequency to AGR problem in
realistic scenarios.

There exist two main practical problems when using the pitch frequency of
voicing as a parameter. First, the reliability of pitch frequency estimation can
be easily affected by existence of low-frequency noise in recordings or any other
degradation of speech quality. Second, the value of pitch frequency changes with the
physical and emotional state of a subject. Humans, while speaking spontaneously,
often raise their pitch in order to stress some parts of utterance or to make their
voices more audible in the presence of high level background noise. Thus, the values
of pitch frequency obtained under real conditions may highly deviate from those
pre-allocated to females and males under clean conditions and, as a consequence,
performance of AGR system may get affected in realistic scenarios.

In order to estimate the values of a pitch frequency the Robust Algorithm for
Pitch Tracking (RAPT ) was used [60]3. The RAPT algorithm consists of the two
main steps: (a) each speech frame is assessed to be voiced or unvoiced, and then,
(b) the pitch frequency is estimated only for the voiced frames. The method is
based on both the normalized cross-correlation which is used to obtain a set of
the pitch value candidates, and dynamic programming which is employed to find
the optimal pitch track. The RAPT is a widely used pitch frequency estimation
algorithm thanks to its robustness and computational efficiency. The robustness of
the method originates from the fact that to determine optimal voicing state and
pitch frequency value, it uses not only the local information about periodicity but
also estimates provided by adjacent frames. The details about the RAPT method
can be found in [60]. The experimental evaluation of the usability of the pitch
frequency to the AGR problem under varying conditions is presented in Chapter 3.

2.2.2 Vocal Tract Related Features

As described in Section 2.2, in addition to the differences in the value of pitch
frequency, the female and male voices differ in the entire range of their spectral

3Precisely, the ESPS implementation of the RAPT method available in the Tcl/Tk SNACK
library was used [57].
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characteristics due to dissimilarities in the anatomical structure of the vocal tracts.
Thus, the goal is to find features describing the shape of short-term speech spec-
trum, i.e. ensure good discrimination between genders and robustness under varying
conditions. Since differences in the formant characteristics (frequency, bandwidth,
amplitude) can be observed for females and males, one of the solutions involves the
usage of these parameters to distinguish the gender. The discussion about appli-
cation of the formant characteristics to AGR problem is given in Section 2.2.2.1.
Another type of features that capture information encoded in the shape of the
spectrum of speech signal is the parametric represention. Three different types of
the parametric cepstral features used in the state-of-the-art Automatic Speech and
Speaker Recognition systems are discussed, namely the Linear Prediction Cepstral
Coefficients (LPCCs) [27, p. 309], Mel-Frequency Cepstral Coefficients (MFCC ) [14]
and Perceptual Linear Prediction (PLP) coefficients [23].

2.2.2.1 Formants and Bandwidths

The shape of the spectral characteristic of speech signal can be directly described
by the values of formant frequencies and bandwidths. The comparison of F0 and
formant features (F1-F4 with their respective frequency, amplitude and bandwidth)
for ten vowels was presented in [10]. The studies on clean-condition speech data
revealed that first four formant frequencies are superior to corresponding formant
amplitudes and bandwidths, and that formant frequencies are slightly better than
F0. When using values of the formants and bandwidths as features in realistic
scenarios, the two similar problems might arise as while using the pitch frequency
as a feature (see discussion in Section 2.2.1). The first problem concerns with reliable
estimation of the parameters. First, estimation of formant peaks may be difficult
to localize due to co-existence of other harmonics, noise, or simply degradation of
recording quality. Second, these parameters can be sensitive to the physical and
emotional state of a subject, and the acoustic properties of an environment in which
the subject stays, e.g. background noise level.

In order to estimate the values of formant frequencies and bandwidths the
method implemented in the Snack library was used [57]. In this method, the for-
mant trajectories are determined using the dynamic programming with constraints
subject to frequency continuity. The formant frequencies candidates are determined
from the roots of the linear prediction polynomial function that is computed peri-
odically. A modified version of the Viterbi algorithm is used to minimize the total
cost of connecting all the mappings of the complex roots to formant frequencies
between consecutive time frame. More information about the method can be found
in [2]. The experimental evaluation of the formant features to the AGR problem
under varying conditions is presented in Chapter 3.
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2.2.2.2 Parametric Representation

As explained in Section 2.2.2, the goal is to find features describing the shape
of short-term speech spectrum, i.e. ensure good discrimination between genders
and robustness under varying conditions. The parametric representation of the
speech signal allows to describe the shape of the spectrum using the set of math-
ematically derived variables. According to the speech production model presented
in Section 2.2, the voiced signal is produced as the convolution of the excitation
waveform generated by the glottis and the impulse response of the vocal tract. The
aim is to decompose the speech signal back into these two components. Let the
excitation signal e(n) be convolved with the transfer function of the vocal tract
filter h(n) in the time domain:

s(n) = e(n) ∗ h(n) (2.2)

Then, the spectrum of the speech signal can be seen as a multiplication of the
spectra of those two components:

|S(ω)| = |E(ω)| · |H(ω)| (2.3)

where |E(ω)| encodes the fast variations (fine structure) and |H(ω)| the slow vari-
ations (envelope) of |S(ω)|. The vocal tract excitation |E(ω)| features are voicing,
amplitude and pitch frequency, whereas the spectral envelope |H(ω)| embodies the
vocal tract resonances with their locations and bandwidths [19].

The spectral envelope can be characterized by cepstrum or by linear prediction
(LP) parameters and their transformations. Let us first focus on the homomor-
phic speech processing which enables the separation of signals which are composed
through multiplication or convolution, and then return to the linear prediction ap-
proach while discussing LPCC features. The homomorphic analysis deconvolves
the vocal tract response h(n) from the excitation signal e(n). The multiplication
of the two magnitude aforementioned spectra is converted to addition by logarithm
operation. Once the components are additive, they can be separated more easily
using the filtering techniques.

log(|S(ω)|) = log(|E(ω)|) + log(|H(ω)|) (2.4)

The cepstrum (anagram of the word spectrum) of the speech signal is then computed
as:

IDFT (log(|S(ω)|) = IDFT ((log|E(ω)|)) + IDFT (log(|H(ω)|)), (2.5)

where IDFT denotes the inverse discrete Fourier transform. This method allows
to approximately separate features characteristic for the slow varying component,
ĥ(n), and the fast varying component, ê(n), from each other:

c(n) = ŝ(n) = ê(n) + ĥ(n). (2.6)
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Analogically to the DFT coeffcients, the low-order cepstral coeffcients represent the
proprieties of the slow varying component ĥ(n) i.e. the temporary shape of the
vocal tract; the high-order cepstral coeffcients describe the fast varying component
ê(n) i.e. the properties of the excitation source. Typically, the set of first 8 to 14
values of c(n) is assumed to correspond to ĥ(n).

In this work we focus on the standard parametric cepstral features used in
the state-of-the-art Automatic Speech and Speaker Recognition systems. First,
the Linear Prediction Cepstral Coefficients (LPCCs) [27, p. 309] extracted based
on the linear prediction (LP) analysis are presented. Then, the two perceptually
motiveted features are compared, namely the Mel-Frequency Cepstral Coefficients
(MFCC ) [14] and Perceptual Linear Prediction (PLP) coefficients [23].

Linear Prediction Cepstral Coeffcients (LPCCs). As mentioned before, the
spectral envelope can be also characterized by the linear prediction (LP) parameters
and their transformations. In linear prediction analysis, the vocal tract transfer
function is modelled by an all-pole filter with transfer function [27, p. 290]:

H(z) = 1∑p
i=0 a(i)z−i

, (2.7)

where p is the order of linear prediction and a(0) = 1. Taking inverse z-transform
of Equation 2.7 results in:

s(n) =
p∑
i=1

a(i)s(n− i) + e(n). (2.8)

The current sample of the signal is estimated as a weighted linear combination of
its past p samples:

ŝ(n) =
p∑
i=1

a(i)s(n− i) (2.9)

and the prediction error when using this approximation is:

e(n) = s(n)− ŝ(n) = s(n)−
p∑
i=1

a(i)s(n− i). (2.10)

The filter coeffcients a(i)|i=1,...,p are estimated so as to minimise the mean square fil-
ter prediction error summed over the analysis window. The autocorrelation method
can be used to determine LP filter coeffcients a(i)|i=1,...,p [27, p. 295]. The nth
linear prediction cepstral coefficient (LPCCs) is then computed using a simple re-
cursion [27, p. 310]:

c(n) =
{
−a(n)− 1

n

∑n−1
i=1 (n− i) a(i)c(n− i) for 0 < n ≤ p

− 1
n

∑n−1
i=n−p (n− i) a(i)c(n− i) for n > p

. (2.11)
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The principal advantage of the cepstral coefficients is that they are approximately
decorrelated. However, the problem is that the high-order coefficients are numeri-
cally quite small when comparing to the low-order coefficients, and this results in
a very wide range variances when going from the low to high cepstral coefficients.
However, this problem can be alleviated by introducing the so called cepstral lif-
tering, namely the process of re-scaling the cepstral coefficients to have similar
magnitudes [70, p. 64].

Mel Frequency Cepstral Coefficients (MFCCs). Let us first introduce the
process of extraction the Mel-Frequency Cepstral Coefficients (MFCC ) [14]. In or-
der to estimate MFCCs, first the power spectrum of the signal is estimated using
the Short Time Fourier transform. In other words, the short-term spectrum is ob-
tained by appling the FFT algorithm to 10 − 20ms frame of the windowed signal.
Next, the frequency axis of the spectrum is rescaled in accordance with the stud-
ies on human speech perception. It has been shown that the relation between the
objective frequency (expressed in Hertz) and the subjective frequency perceived by
humans is almost linear up to 1kHz, and logarithmic above this value (see Fig-
ure 2.3). Davis and Mermelstein [14] observed that transformation of the frequency
axis of the spectrum from linear to mel scale (perceptual scale of pitches judged
by listeners) highlights the perceptually relevant properties of the spectrum. To
rescale the frequency axis, the short-term speech spectrum is processed in the bank
of overlapping mel-frequency filters presented in Figure 2.4. This way, the FFT
magnitude coefficients are weighted by transfer functions of the triangular filters
and logarithm operation is performed to produce logarithmic filterbank energy co-
efficients, mj|j=1,...,P , where P is the number of filters in the bank. The cepstrum
of the signal is then obtained by IDFT. Owing to symmetry of the log magnitude
spectrum function, a Fourier transform can be replaced by the less computation-
ally demanding Discrete Cosine transform (DCT). Finally, the nth mel-frequency
cepstral coefficient (MFCCs) is computed using the following formula [26, p. 163]:

c(n) =
√

2
P

P∑
j=1

Ajcos

(
πn (j − 0.5)

P

)
for n ∈ [1, P ], (2.12)

where Aj is equal to the logarithm of the magnitude coefficient mj .

Perceptual Linear Prediction (PLP) coefficients. PLPs versus MFCCs.
Let us discuss the extraction process of he Perceptual Linear Prediction (PLP) [23]
coefficients, and study their properties with respect to MFCCs based on [19, 26].

Apart from the last step of analysis, the extraction process of PLP features is
very similar to the extraction process of MFCCs, but with perceptual properties
incorporated in a way that it is more directly related to psychophysical results.
Similarly to MFCCs, first the short-term power spectrum is estimated, and then,
the perceptual properties are introduced when the signal is processed by the fil-
ter bank. However, instead of using the triangular mel filters, the trapezoidally
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Figure 2.3. Relation between the objective frequency [Hz] and the frequency per-
ceived by humans according to the mel scale: mel(f) = 1125 · ln(1 + f

700 ) [27, p. 34].
Characteristic is almost linear below 1kHz.

Figure 2.4. Triangular filters of the type suggested by Davis and Mermelstein [14]
for transforming the frequency axis of the short-term speech spectrum onto the mel-
scale.

shaped filters are applied at roughly 1-Bark intervals imitating the critical-band
filters. Then, the spectrum is pre-emphasized by a function that approximates the
sensitivity of human hearing at different frequencies, unlikely in the case of MFCCs,
where the preemphasis is done before the log power spectrum estimation. The pre-
emphasis is made by weighting the elements of the critical band spectrum. Next,
the compression of the spectral amplitudes is performed. The weighted elements
of the critical band spectrum are compressed by cubic root operation to approxi-
mate the non-linear relationship between the intensity of a sound and its perceived
loudness. Next, the Inverse Discrete Fourier Transform (IDFT) is taken. In case of
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MFCCs, this step provides the cepstral coefficients which are approximately orthog-
onal, while for PLP analysis the results are more like autocorrelation coefficients.
Finally, a lower order all-pole model of LPC is applied to perform spectral smooth-
ing, and in consequence, provide compact approximation of the spectrum. The LP
parameters are converted to cepstral coefficients through the simple recursion (as
given in Equation 2.11). This way the orthogonal representation of the features
is obtained. Summarizing, the principal difference between the MFCC and PLP
features lies in the nature of spectral smoothing. In case of MFCCs, the spec-
tral smoothing is based on the cepstral analysis, whereas for PLPs, it is based on
the linear prediction analysis. The experimental evidence suggested that in overall
ASR systems based on PLPs provide comparable performance as those based on
MFCCs [26, p. 165].

The three discussed cepstral representations have a similar structure of a feature
vector. The feature vector ct extracted from a short frame of speech signal at time
t, contains a set of the static coefficients c(n)|n=1,...,Nc−1. Nc denotes the number of
the initial coefficient of c(n) included to the feature vector and is typically chosen
between 8 and 14. Additionally, the energy coefficient c(0) is typically added to
the static feature vector such that ct = [c(0), .., c(Nc − 1)]. Furthermore, in order
to take into account the time correlation that exist in the speech signal due to
coarticulation, the time derivatives may be added to the static parameters. The first
order regression coefficients referred to as delta coefficients (∆ct) are considered [27,
p. 425]:

∆ct = ct+D − ct−D, (2.13)

where D represents the number of frames to offset either side of the current frame
and is typically set to value of 2. However, since the time-difference features are
usually sensitive to random fluctuations in the original static features, a more robust
measure of local change is obtained by applying linear regression over a sequence of
frames [26, p. 166]:

∆ct =
∑D
τ=1 τ (ct+τ − ct−τ )

2
∑D
τ=1 τ

2
(2.14)

The delta coefficients are determined for all the static parameters including the en-
ergy coefficient. Thus, the total number of the elements in the feature vector is 2Nc

when adding the delta coefficients.

In the literature, several studies have been reported using different parametric
representations of speech signal to AGR problem. The analysis of the linear pre-
diction, autocorrelation, reflection and cepstral representations was performed on
the clean speech data collected from 52 speakers for vowels, voiced and unvoiced
fricatives [69]. It was found that cepstral features yield the best system and the
performance improves when increasing linear prediction order from 8 to 20. It was
also observed that AGR system for vowels and voiced fricatives attain better per-
formance than for unvoiced fricatives. In addition, the study implied that gender
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information is time invariant, phoneme independent, and speaker independent for a
given gender. The evaluation of the 9 initial MFCCs for different groups of phonemes
was conducted in [18]. The study showed that AGR based on vowels, nasal, liquids
perform better than AGR based on fricatives, stops, and silence and sound ’H’. It
was also found that the static coefficients are superior to the delta coefficients, and
that using of both types of coefficients (static+delta) may improve performance.
More recently, the comparison of Support Vector Machines (SVMs) with nearest
neighbor classifiers for the first 12 cepstral coefficients was presented in [68]. For
high quality recordings taken from the ISOLET corpus, the system based on SVMs
attained perfect recognition rate. Summarizing, the aforementioned studies were
conducted on high-quality, clean-condition speech data. However, a very limited
number of works considered performance of the features in realistic scenarios. Sim-
ilar to the case as formants and bandwidths, the cepstral features can be affected in
realistic scenarios through for example, environmental variations and background
noise, poor quality microphone or speaker varying intensities. This motivated us to
revisit AGR studies on the cepstral features. We present this study in Chapter 3.

2.3 Visual Features

A face is often regarded by humans as one of the most important cue in de-
termining gender of a person. Numerous studies have been conducted to indicate
key features of the face that allow humans for very precise and fast recognition of
gender [6, 42]. Psychologists aimed to determine exact parts or attributes of the
face that are essential for this process. The eye and brow region was identified
as important when a straight view of the face was considered [8], but nose and
chin protuberance in a three-quarter view [6, 11]. Further studies on sexual di-
morphism in the human face showed that the importance and typical qualities of
different characteristics heavily depend on age and other individual attributes of
a subject [54]. Thus, indication of a set of features that unambiguously describes
a subject is open to research. Additionally, the selection of adequate features for
robust AGR is further impeded by factors that are challenging for all vision-based
systems, like quality and scale of an image, orientation and alignment of an object
on an image or changing lightning conditions.

Early research in AGR have focussed upon the use of artificial neural networks
(ANNs) to both extract relevant features from raw images and perform classifi-
cation. These systems were evaluated on very small sets of subjects and clean
condition data. Perfect performance was reported for the experiments conducted
on a set of 20 subjects using the 2 layer back-propagation ANN called "Empath" [13].
Similarly, the average accuracy of 91.1% was obtained for 3 layer back-propagation
ANN called "SEXNET " that classified a set of 90 exemplars [20]. Subsequently,
the applicability of geometrical features indicated by psychological researches was
verified. The 16 geometrical features (e.g. eyebrow thickness or nose width) were
extracted from frontal view images of 42 subjects and used for experiments with two
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competing hyper basis function networks corresponding to each gender (one for male
recognition and one for female recognition). The accuracy of 79% was obtained for
clean condition data [7]. Unfortunately, this approach did not provide satisfactory
results and the process of feature extraction was found to be time-consuming and
complex.

The standard Automatic Face Recognition (AFR) systems use a low-dimensional
representation of faces obtained by means of component analysis techniques. The
eigenface method exploits Principal Component Analysis (PCA) to extract the most
relevant characteristics of human faces. The suitability of the method for the V-
AGR problem and clean condition data was experimentally confirmed by the com-
parison with raw data representation [68]. However, in case of face recognition
systems, this technique works efficiently only when constant face pose and lightning
are preserved and tends to fail under varying conditions. To overcome this problem
a technique that additionally uses Linear Discriminant Analysis (LDA), referred to
as the fisherface method, was introduced [3]. Details of the eigenface and fisherface
techniques are presented in the following sections.

2.3.1 Eigenfaces

The eigenface method developed by Sirovich and Kirby [56] and used by Turk
and Pentland [64] exploits statistical analysis to extract the most relevant charac-
teristics of the human face. A set of training images is analyzed using PCA in order
to find the most significant "ingredients" of the faces. Each of these ingredients is
referred to as the eigenface [64]. Given an estimate of eigenfaces, any human face
can be represented as weighted linear combination of eigenfaces. For instance, an
arbitrary face can be represented as a sum of the average face plus 60% of the first
eigenface, 17% of the second eigenface, and so on. The idea behind the eigenface
method is to use a linear transformation to project face images into a new lower
dimensional discriminant space (feature) space.

Let us consider a training set consisting of M face images, where each image is
of size N × N pixels and is aligned as a column vector Γj|j=1,...,M of size N2 × 1.
A linear projection of an image into a new P -th dimensional discriminant space
(P < M) is defined as:

Ωj = WTΓj , where j = 1, . . . ,M (2.15)

and W(N2×P ) denotes a projection matrix with orthonormal columns. The image
is represented in the discriminant space as Ωj = [ω1j , ω2j , . . . , ωPj ], where each
element ωkj|k=1,...,P describes the contribution of the k-th eigenface in representing
the face image Γj .

The optimal projection matrix Wopt is chosen to maximize the determinant
of the total scatter (covariance) matrix ST of the projected images, i.e. a set of
orthonormal vectors un|n=1,...,M which will best describe the distribution of the
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data that is in the scope of interest [3]:

Wopt = arg max
W

|WTSTW| = [u1, u2, . . . , uM ]. (2.16)

The total scatter matrix ST is defined as:

ST = 1
M

M∑
n=1

(Γn −Υ)(Γn −Υ)T = AAT , (2.17)

Υ = 1
M

M∑
n=1

Γn, (2.18)

A = [Γ1 −Υ,Γ2 −Υ, . . . ,ΓM −Υ] , (2.19)

where Υ denotes the average face vector over all training images and A consists of
a set of normalized face images. The set of normalized face images is analysed using
PCA technique in order to find a set of orthonormal vectors un|n=1,...,M . However,
since the matrix ST is of size N2×N2, the application of PCA for typical image size
can become a computationally expensive task (e.g. for N = 64, ST is 4096× 4096).
To overcome this problem, the eigenvalues and eigenvectors of ST are estimated in
accordance with the assumption that the total number of training images is smaller
than the dimension of a new discriminant space (M < N2). Then there is only
M − 1, rather than N2 meaningful eigenvectors (the remaining eigenvectors will
have associated eigenvalues equal to zero) [64]. Therefore, it is possible to first
compute the M eigenvectors vn|n=1,...,M of matrix L(M×M) given as:

L = ATA, where Lml = (Γm −Υ)T (Γl −Υ) (2.20)

and then, expolit them to determine the eigenvectors of ST :

un =
M∑
k=1

vnk(Γk −Υ), where n = 1, . . . ,M. (2.21)

Usually, only an arbitrary number of eigenvectors P (out ofM−1), which correspond
to the highest eigenvalues, is kept constituting a set of the eigenfaces. As discussed
earlier, whenWPCA = Wopt = [u1, u2, . . . , uP ], the projection of an arbitrary image
Γj to the eigenspace is given in the form of a vector Ωj , such as:

Ωj = WT
PCA(Γj −Υ). (2.22)

The eigenface algorithm is considered as a computationally efficient and fast
feature extraction method, espacially when comparing with techniques based on
metric representation of the human face. The relatively high recognition rates have
been obtained both for AFR and AGR task when images of identical iluminantion
and resolution, and possibly of the same alignment, rotation and pose of the face
were analyzed [64, 68]. The main drawback of the method is its high sensitivity to
variations of the aforementioned factors. In case of automatic face recognition, the
performance of the algorithm was significantly reduced for horizontal and vertical
misalignments, iluminantion changes and low resolution images [33].
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2.3.2 Fisherfaces
The eigenface algorithm aims at indicating the most significant variations in the

set of analyzed face images in order to capture subject specific features. However, in
most of the cases, the variations introduced by the alternating external conditions
(e.g. illumination) and image setup (e.g. face alignment and pose) are much more
significant then those introduced by individual subjects characteristics [41]. There-
fore, when using the eigenfaces, the subject related variations may be "concealed"
by wider scatter of the data in the direction of the varying external conditions and
image setup. To overcome this problem, a method that maximizes scatter between
images belonging to different classes while minimizing the scatter between images
belonging to the same class was introduced and is referred to as the fisherface
method [3]. This method uses the Fisher’s Linear Discriminant Analysis (LDA)
and can be considered as an enhanced version of the eigenface algorithm.

Let us consider a pattern recognition problem with C different classes denoted as
χ1, χ2, . . . , χC , where each of the classes χi|i=1,2,...,C contains K images Γj|j=1,2,...,K .
When the mean image Υi for each class χi is computed as [3]:

Υi = 1
K

K∑
j=1

Γj (2.23)

and the mean over all images Υ using Equation 2.18, the within-class scatter matrix
SW and the between-class scatter matrix SB are determined as follow:

SW =
C∑
i=1

∑
Γj∈χi

(Γj −Υi)(Γj −Υi)T (2.24)

SB =
C∑
i=1
|χi|(Υi −Υ)(Υi −Υ)T (2.25)

where |χi| denotes a number of samples in a class χi. The optimal projection
matrix, Wopt, should be chosen to miximize the ratio of the determinant of the
between-class scatter matrix to the determinant of the within-class scatter matrix,
i.e. [3]

Wopt = arg max
W

|WTSBW|
|WTSWW|

. (2.26)

The optimal projection matrix consists of generalized eigenvectors of SB and SW
and to be determined requires calculation of S−1

W . However, due to the fact that the
rank of the within-class scatter matrix SW (N2 ×N2) is smaller than M − C and,
as assumed before, the number of images in the set S is usually smaller than the
number of pixel in an image (M < N2), the matrix SW is singular. To overcome
this problem, the fisherface method employs two step algorithm to obtain Wopt.
First, the PCA analysis is used to reduce the dimension of feature space from N2 to
M −C, and WPCA is estimated as described in Section 2.3.1. Second, the Fisher’s
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LDA is used to obtain projection into C − 1 subspace. The auxiliary projection
matrix, W̃LDA, is determined by solving the following equation:

S̃BV = S̃WVD, (2.27)

where V is a matrix contaning eigenvectors and D is a vector containing corre-
sponding eigenvalues, and

S̃B = WT
PCASBWPCA,

S̃W = WT
PCASWWPCA.

W̃LDA is created as a submatrix of V where only C − 1 eigenvectors corresponding
to the highest eigenvalues in D is kept. Finally, the optimal projection matrix for
the fisferface method, WLDA, is determined as:

WLDA = WT
PCAW̃LDA. (2.28)

The projection of data into the fisherspace is achieved analogously to the projection
of the data into the eigenspace, i.e. an arbitrary image Γj is to be represented in
the fisherspace as a vector Ω̃j , where:

Ω̃j = WT
LDA(Γj −Υ). (2.29)

In case of the large variation in lightning and facial experssions for the AFR
problem, the fisherface method has been shown to be superior to the eigenface
method [3]. However, the eigenfaces can outperform fisherface when the number of
samples (images) per class is small [36].

Chapter 4 presents experimental studies using eigenfaces and fisherfaces under
varying conditions.

2.4 Classification
The goal of classification is to predict a class label of an object given the feature

attributes. Each of the classes contains a group of items of certain properties which
are described by a model (see Section 2.1). Depending on the method used to
represent the model, the classification algorithms can be roughly divided into the
two following categories [5, p. 43][43]:

1. the generative classifiers which determine the class-conditional densities (like-
lihood) P (x|yi) of the input vector x for each class yi and infer the prior class
probabilities P (yi) to calculate the posterior class probabilities P (yi|x) using
Bayes’ rule4:

P (yi|x) = P (x|yi)P (yi)
P (x)

(2.30)

and then picking the most likely class;
4Equivalently, the joint probability P (x, yi) can be model directly and then normalized to

obtain the posterior probabilities.
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2. the discriminative classifiers which form discriminant functions that directly
maps input x into decision (class label yi) under the constraint of minimizing
classification error.

From the cue integration point of view, the main advantage of the generative classi-
fiers consist in the possibility of combining the outputs of a few classifiers systemat-
ically by using the rules of probability, and is grounded on the fact that each of the
models give estimates of posterior probability for the classes. However, at the same
time, the process of modelling the probability densities of appropriate accuracy re-
quires large amount of training data, especially when input is of high dimensionality.
In contrast, the discriminative classifiers by direct forming of discriminant functions
avoid spending computational resources on modelling the probability distributions.
However, additional methods are required in order to combine the outputs of such
classifiers in a systematic way, such as taking into account confidence with which a
sample is assigned to a particular class (see Section 2.5).

In this work we use the Support Vector Machines (SVMs) which are an example
of a discriminant classifier. The SVMs were chosen as classification algorithm due
largely to their superior performance compared to other classifiers in the previous
studies on AGR problem, both for audio and visual data. The comparison of SVMs
with nearest neighbor classifiers for the first 12 cepstral coefficients on high quality
audio recordings from the ISOLET corpus was presented by Walawalkar et. al [68]
with 100% AGR rate for SVMs. Similarly, for the AGR task based on visual cues
the experimental studies conducted by Walawalkar et. al [68] and Moghaddam et.
al [39] suggested that the SVMs with the Radial Basis Function (RBF) kernel are
superior to the linear, quadratic, fisher linear discriminant, k-nearest neighbor clas-
sifiers as well as to more complex techniques such as large ensemble RBF networks.
Further, the SVMs attracted our attention due to the fact of being a binary classi-
fier and requiring a relatively small number of training examples to estimate with
respect to the dimensionality of the input, unlike for instance the Multi Layer Per-
ceptron (MLP) [24], which is especially valuable for the visual-based AGR system
where we train with only a very few number of images. Important was also the
issue of using the same classification algorithm both in case of A-AGR and V-AGR
system.

2.4.1 Support Vector Machine

This section contains a brief description of the Support Vector Machine (SVM )
which is a discriminant classifier originally proposed by Vapnik [65]. The SVMs
were designed to solve a two-class problem, i.e. they are an example of a binary
classification algorithm. Given a set of training samples (xi, yi)|i=1,...,l, where xi ∈
RN is a feature vector, and yi ∈ {−1,+1} is the corresponding class label, a goal
is to find a discriminant function f : RN → R that will separate the samples
belonging to the two different classes. When making an assumption that samples
are linearly separable, a decision surface that does the separation is given in a form
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of a hyperplane [22, p. 319]:

f(x) = wTx+ b = 0, (2.31)

where w is an adjustable weight vector, b is a bias, and f(x) ≥ 0 for yi = +1 and
f(x) < 0 for yi = −1. For a given weight vector w and bias b, the separation
between the hyperplane and the closest sample is referred to as the margin of sepa-
ration. There exist many realizations of the hyperplane that might classify the data,
however the aim of SVMs is to find a particular hyperplane for which the margin
of separation is maximized for the samples from both classes. For this purpose, the
following optimalization problem has to be solved [22, p. 322]: find the optimum
values of the weight vector w0 and the bias b0 such that they satisfy the constraints

yi(wT
0 xi + b0) ≥ 1 for i = 1, . . . , l

and the weight vector w0 minimizes the cost function:

φ(w) = 1
2
‖w‖2 = 1

2
wTw.

This constrained optimization problem is solved using the Lagrange multipliers
method [66]. The optimal parameters w0 and b0 given by [22, p. 324]:

w0 =
l∑

i=1
α0,iyixi

b0 = 1−wT
0 x(s) for y(s) = 1

are used to formulate the discriminant function defining the optimal separation
hyperpalne:

f(x) =
m∑
j=1

α0,jyjxTj x+ b0, (2.32)

where {x1, . . . ,xj , . . . ,xm} ∈ x(s) and m ≤ l are the support vectors and α0,j are
the corresponding Lagrange multipliers. It is important to note that the classifier
is determined only by a subset of the training samples (i.e. support vectors), the
corresponding Lagrange multipliers and the bias.

In case of the non-linear separable problem, when the training samples can not be
discriminated using a linear hyperplane, it is possible to formulate the optimization
problem in a way that the classification error over the training set is minimized [22,
p. 328]: find the optimum values of the weight vector w0 and the bias b0 such that
they satisfy the constraints

yi(wT
0 xi + b0) ≥ 1− ξi for i = 1, . . . , l

ξi ≥ 0 for all i
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and the weight vector w0 and the slack variables ξi minimize the cost function:

φ(w, ξ) = 1
2
wTw+ C

l∑
i=1

ξi.

where C is a user-specified positive parameter. The slack variables can be seen as
a measure of the violation of the margin. For 0 < ξi < 1, the sample crosses the
boundary determined by the margin; however it is still correctly classified. The value
greater than 1 means that the sample falls on the wrong side of the hyperplane.
The parameter C controls the tradeoff between complexity of the classifier and
the number of nonseparable samples, i.e. the amount of errors that are made.
Therefore, it may be seen as a kind of a "regularization" parameter; it has influence
on the generalization abilities of the classifier. As mentioned earlier, C is to be
specified by a user, usually by means of experiments. The solution of the specified
optimization problem is the discriminant function in a form previously specified by
Equation 2.32.

So far we discussed how to find the optimal separation hyperplane in the linearly
separable and the linearly non-separable case. However, the SVMs can be extended
to the form of non-linear classifier by applying the so called kernel trick. The
discrimination function is similar as in the linear cases, except that every inner
product is replaced by a non-linear kernel function, K(x,y), that projects input
vectors to a high-dimensional feature space [22, p. 330]:

f(x) =
m∑
j=1

αjϕ(xj)Tϕ(xj) + b,

K(x,y) = ϕ(x)Tϕ(y).

Thus, the separation hyperplane is formulated in the high-dimensional feature space
as:

f(x) =
m∑
j=1

αjK(xj ,x) + b. (2.33)

It has to be noted that by using kernel function, the costly determination of the
explicit high-dimensional representation of the input vectors is avoided. The kernel
function K(x,y) can be interpreted as a similarity measure between the vectors x
and y. The two widely used inner product kernels are [22, p. 333]:

• polynomial kernel:
K(x,y) = (xTy+ p)d, (2.34)

where the power d is specified a priori by the user. The linear kernel is a
special type of the polynomial kernel: K(x,y) = xTy.

• radial-basis function (Gaussian) kernel:

K(x,y) = e
(
− 1

2σ2 ‖x−y‖2
)

(2.35)

where the width σ2 is specified a priori by the user.



26 CHAPTER 2. AUTOMATIC GENDER RECOGNITION

Platt’s Method

For the purpose of cue integration, described in Section 2.5, we need information
about the confidence with which a sample is assigned to a particular class. One of the
measures that expresses the confidence of classification is the conditional posteriori
class probability P (yi|x) of classifying a sample x to a certain class yi. However, as
mentioned earlier, SVMs can not directly estimate P (yi|x).

The method derived by Platt [47] allows to estimate a value of the posteriori class
probability for SVMs and is based on the following reasoning [53]. First, the value of
the SVMs discriminative function f(x) is interpreted as a distance of a sample to the
optimal hyperplane. Then, when assuming that P (yi|x) is continuous in x, it can
be said that the samples placed closer to the hyperplane have a larger probability of
being misclassified than samples lying further from the hyperplane. The closer the
sample is to the hyperplane, the smaller change is enough to alter the decision sign.
Thus, it is assumed that the a posteriori probability can be represented in terms of
function of the value of f(x). Several different functions were proposed to model
this relation [21], however the Platt’s modelling motivated by empirical results is in
the widest use. In Platt’s method, the relation between the posteriori probability
and value of the discriminant function is expressed in terms of the sigmoid function,
i.e. the sigmoid function maps the SVM outputs into probabilities [47]:

P (yi = +1|f(x)) = 1
1 + eAf(x)+B . (2.36)

As long as A < 0 the monotonically increasing function is assured. The parameters
of the function, A and B, are found empirically during training by minimizing the
cross-entropy error.

2.5 Cue Integration
Cue integration is directly linked to the broad group of information fusion tech-

niques and consists in utilizing a combination of information from different sources5,
either to generate one representational format, or to reach a decision [55]. An impor-
tant assumption, determining the usefulness of the approach, is that the information
provided by the different signals are complementary.

While considering the cue integration in pattern recognition from the point of
decision making, the main reasons for combining information are accuracy, robust-
ness and efficiency. The accuracy of a pattern recognition system may be improved
by providing more complete picture of a classified object. The use of multiple sen-
sors, i.e. redundancy, can increase reliability of the provided description. Further,
the separate streams of information may be distorted in a different manner pro-
viding different distributions of errors in the system. Then, by proper integration
of the cues, the robustness of recognition process towards various distortions and

5Or from one source, but using different signal extraction or processing techniques [48].
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noises may be improved. Finally, cost of implementation can be reduced by using
several cheap sensors rather than a single expensive one.

The integration of information processed by the systems can be performed at
different levels of system functionality, and the following two main approaches are
distinguished among the data fusion techniques [29, 55]:

• fusion at feature level when information is combined before any use of classi-
fiers or experts, and it is also often referred to as low level fusion;

• fusion at classifier level when integration is accomplished by an ensemble of
classifiers or experts, and it is often referred to as high level fusion.

In case of the low level fusion, the combination of several information signals can
be simply achieved by: (a) weighted summation of the extracted feature vectors if
they are of the same type, e.g. data from two microphones; or (b) concatenation of
the feature vectors if they are of different types, e.g. audio and visual data. In spite
of mathematical simplicity, the low level fusion has certain drawbacks. First of all,
the feature vectors originating from different sources must be available at the same
time, which leads to the requirement of synchronous data acquisition. Moreover,
the dimensionality of the final feature vector may be increased, which can lead to
the curse of dimensionality problem [15, p. 170]. Due to these problems, the high
level fusion is usually preferred for audio-visual integration [29].

For the purpose of high level fusion, information about the confidence with which
a sample is assigned to a particular class is required. For instance, in case of SVMs
a measure based on the distance of a sample to the margin is often employed. The
method for estimating the a posteriori probability of a particular class based on a
value of the SVMs discriminative function is presented in Section 2.4.1. There are
different methods for integrating evidences, i.e. confidence measures provided by
multiple classifiers. The common methods include [49, 55]:

• majority voting of classifiers, where each of the classifiers provides a hard
decision about classes (0 or 1) based on evidence. A final consensus is reached
when at least one more than half the number of classifiers agree on the same
decision. For a two-class problem, the number of classifiers must be odd and
greater than two (to prevent ties).

• ranked list combination, where each classifier provides a ranked list of class
labels, with the top entry indicating the most preferred class. The final deci-
sion can be obtained, for instance, by selecting the most popular class among
the n-top entries in the list.

• methods based on algebraic combination of classifier outputs. The total sup-
port for each class is obtained as a simple function (like sum, product, max,
min or mean) of the evidences provided by individual classifiers. The final
decision is made by choosing the class with the strongest support. Let us
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assume that there are L different classifiers, where each classifier i provides
evidence dij for each class j such that:

∀
i=1,...,L

∀
j=1,...,N

: 0 ≤ dij ≤ 1,

∀
i=1,...,L

:
N∑
j=1

dij = 1,

the class with the strongest support j0 ∈ {1, . . . , N} is chosen as the following:

j0 = arg max
j=1,...,N

F(d1j , . . . , dLj)∑N
j=1F(d1j , . . . , dLj)

(2.37)

where F(·) denotes an algebraic function and the denominator is formulated
to normalize the values of the support for each class between 0 and 1. For
instance, the final decisions for the sum, product or max rule is obtained as
given by Equations 2.38, 2.39 or 2.40, respectively.

j0 = arg max
j=1,...,N

∑L
i=1 dij∑N

j=1
∑L
i=1 dij

(2.38)

j0 = arg max
j=1,...,N

∏L
i=1 dij∑N

j=1
∏L
i=1 dij

(2.39)

j0 = arg max
j=1,...,N

maxi=1,...,L dij∑N
j=1 maxi=1,...,L dij

(2.40)

It can be observed that Equations 2.38-2.40 give equal importance to all clas-
sifiers. However, if a particular classifier has better discrimination abilities and
provides more reliable decisions, the overall performance of the system may be
further improved by increasing importance of evidences provided by this classifier
during the cue integration. In practice, a higher weight is usually assigned to such
a classifier. Assuming that weights for all classifiers are determined such that:

∀
i=1,...,L

: 0 ≤ wi ≤ 1 ∧
L∑
i=1

wi = 1,

the class with the strongest support j0 ∈ {1, . . . , N} can be chosen as:

j0 = arg max
j=1,...,N

F(d1j , . . . , dLj ;w1, . . . , wL)∑N
j=1F(d1j , . . . , dLj ;w1, . . . , wL)

. (2.41)
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As before, the final decisions for the sum, product or max rule is obtained using
Equations 2.42, 2.43 or 2.44, respectively.

j0 = arg max
j=1,...,N

∑L
i=1 dijwi∑N

j=1
∑L
i=1 dijwi

(2.42)

j0 = arg max
j=1,...,N

∏L
i=1 dijwi∑N

j=1
∏L
i=1 dijwi

(2.43)

j0 = arg max
j=1,...,N

maxi=1,...,L dijwi∑N
j=1 maxi=1,...,L dijwi

(2.44)

There are different methods for determing weights of the classifiers. Generally, these
methods can be divided into the two groups with respect to the way of defining
value of the weights. The first group includes methods with the static weights that
are usually determined using an additional set of data (e.g. development set) by
minimizing a total classification error. Each classifier is assigned a certain weight
that stays constant for all the test samples. The second group is constituted by
methods that determine the weights dynamically, separately for each of the classified
samples at run time. The weight for each of the classifiers can be specified, for
example, as inverse of entropy [38] or can be found using the Dempster-Shafer
method [31].

Thus far, we assumed that a particular object (subject) is characterized by a
single sample. Let us consider the scenario when the object is characterized by a
sequence of consecutive samples, where each of the samples is classified separately,
such as a series of consecutive images or frames of speech signal. In such a case,
instead of performing the cue integration every time after the classfication of a single
sample, the fusion can be accomplished in the so called batch mode, i.e. for all
samples in a sequence together after the last sample in the sequence is classified [5,
p. 240]. Assuming that the number of samples in the sequence is constant for each
classifier Ki|i=1,...,L (but may differ for different classifiers), the overall evidence
dALLij for the i-th classifier and the j-th class can be obtained based on all samples
in a sequence k = 1, . . . ,Ki, where each of samples provides an evidence dkij :

dALLij =
F
(
d1
ij , . . . , d

Ki
ij

)
∑N
j=1F

(
d1
ij , . . . , d

Ki
ij

) (2.45)

Then, the cue integration is performed according to Equation 2.41, where dij is
substituted by the overall sequence evidence dALLij . The evidence dALLij can be
obtained for the sum, product or max rule using Equations 2.46, 2.47 or 2.48,
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respectively.

dALLij =
∑Ki
k=1 d

k
ij∑N

j=1
∑Ki
k=1 d

k
ij

(2.46)

dALLij =
∏Ki
k=1 d

k
ij∑N

j=1
∏Ki
k=1 d

k
ij

(2.47)

dALLij =
maxk=1,...,Ki d

k
ij∑N

j=1 maxk=1,...,Ki d
k
ij

(2.48)

2.5.1 Audio-Visual AGR System
In most typical applications of AGR system, both audio signal and visual signal

are available. Ideally, an AGR system should be able to exploit both modalities to
improve accuracy and robustness of the system. Since each modality has different
characteristics, audio-visual cues can provide a more comprehensive description of
a subject than a single modality. Finally, integration of the cues may yield a AGR
system that is resilient to the degradation of both, or even to temporal unavailability
of one of the input signals.

In this work, a two-fold approach is adopted in designing the audio-visual AGR
system. First, we study the two cues separately by building audio-based and vision-
based AGR systems. Second, these systems are integrated to provide the final
decision based on both modalities. The architecture of the AV-AGR system is
presented in Figure 2.5. The AV-AGR system is created by fusing evidences from
the two modalities at the high level. It is due to the fact that data synchronization
at this level of the audio-visual AGR system is much easier than at the lower levels
of the system.

As a measure of confidence with which a sample is assigned to a particular class,
the a posteriori class probability is chosen. For SVMs, value of this probability is
estimated using the Platt’s method described in Section 2.4.1.

The posteriori probabilities provided by the single-cue classifiers are combined
using the sum, product or max rule to provide the final decision based on both
modalities. The theoretical studies conducted by Tax et. al [61] showed that these
rules are most suitable for the two-class problem in which posterior probabilities
are well estimated, i.e. without a large number of extreme posterior probability
estimations, one and zero. Further, it was shown by Kuncheva that the max rule
is superior to average integration and majority voting when distribution of the a
posterior probabilities is uniform [32]. In our system, the approach based on the
majority voting is not considered, since it requires an odd number of classifiers for
a two class problem and we have only one classifier for each cue.

In case when a subject is characterized by a single sample, the cue integration
can be performed directly according to Equation 2.41 where the evidence dij is
substituted by the probability of assigning a particular sample to the class J = j
by the classier I = i, namely the a posteriori class probability Pr(J = j|I = i) for
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Figure 2.5. Overview of the architecture of the AV-AGR system. The two modalities
are processed separately, and then integrated at the classifier level.

j ∈ {Female,Male} and i ∈ {Audio, V ision}6. In case where a subject is charac-
terized by a sequence of consecutive samples, the cue integration can be performed
according to Equation 2.41 where the evidence dij is substituted by the evidence
dALLij determined based on all samples in audio and visual sequences according to
Equation 2.45, which takes the following form for the AV-AGR problem:

dALLi,j = F (Pr1(j|i), . . . , P rKi(j|i))∑2
j=1F (Pr1(j|i), . . . , P rKi(j|i))

.

For example, the evidence for the female class, audio cue and sum rule, where KA

denotes the number of samples in corresponding audio sequence is obtained as7:

dALLA,F =
∑KA
k=1 Prk(F |A)(∑KA

k=1 Prk(F |A)
)

+
(∑KA

k=1 Prk(M |A)
) .

The cue integration studies with equal and unequal weighting of modalities for
the AV-AGR system are presented in Chapter 5.

6Thereafter, Pr(J = j|I = i) is denoted by Pr(j|i).
7Abbravations: ’F’=Female, ’M’=Male and ’A’=Audio.





Chapter 3

Audio-Based AGR Studies

This chapter presents experimental studies on different audio features for AGR
task. The evaluation of the voice source and vocal tract related features is performed
in the framework of A-AGR system described in the previous chapter. First, moti-
vation of the studies is discussed and the main objectives are defined in Section 3.1.
Then, experimental setup is specified in Section 3.2, and results obtained under
varying conditions are presented and discussed in Section 3.3. Finally, the main
conclusions drawn from the studies are summarized in Section 3.4.

3.1 Motivation and Objectives
In the literature, different feature representations of audio signal have been stud-

ied for the AGR task, such as fundamental frequency (F0), formants with their re-
spective frequency, amplitude and bandwidth, and the cepstral features like LPCCs
or MFCCs (see discussion in Section 2.2). Most of the previous works on the AGR
mainly analyzed these features for specific phonemes or broad phonetic classes and
using clean condition data. However, a very limited number of studies considered the
performance of the audio features in realistic scenarios in which different practical
difficulties may occur. As discussed in Sections 2.2.1 and 2.2.2, the F0 estimation
process can be affected by existence of low-frequency noise in recordings or any
other degradation of speech quality, and in addition, the value of F0 changes with
the physical and emotional state of a subject. Similarly, the vocal tract features
can be impacted in realistic scenarios by, for instance, environmental variations and
background noise, poor quality microphone or speaker varying intensities. Along-
side with the intention of studying audio-visual AGR, this motivated us to revisit
AGR studies and analyze the voice source and vocal tract related features with
emphasis on the following practical questions:

1. What is the effect of data selection (selection of particular frames) on the
AGR accuracy? The previous studies have shown that AGR accuracy is not
the same across all groups of phonemes. This information can be exploited
to build a better AGR system that, ideally, will identify gender based on

33
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a selected group of phonemes. However, in practice, this approach can be
complex and requires the use of for example a phoneme recognizer before
AGR. Our approach is based on the observation that typically voiced segments
provide the best performance, as it was shown in [69, 18]. Thus, can selection
of voiced frames lead to a better AGR system compared to the approach
employing the entire speech segments?

2. What is the effect of varying conditions on the performance of the AGR system
trained with different voice source and vocal tract related features? Which type
of audio features is robust towards varying conditions?

3. What is the effect of the cepstral feature dimension on the AGR accuracy?
In [69], it was shown that increase of linear prediction order and increase in
number of cepstral coefficients lead to improvement in the AGR recognition
rate. Does this trend hold also under noisy conditions?

4. What is the effect of training data conditions on the AGR accuracy? Is it bet-
ter to train the AGR system on clean-condition data only or multi-condition
(clean+noisy) data? How much the quality of data influences the gender
information present in the voice source and vocal tract related features?

5. What is the effect of fusing the voice source and vocal tract information on
the AGR accuracy? How complementary are the voice source and vocal tract
related features?

3.1.1 Experiments
In order to answer the aforementioned questions, we perform three types of

experiments. First, we compare two different data selection approaches: (a) where
any speech part (containing both voiced and unvoiced speech) of the signal is used
as a source of information about gender or (b) where only voiced speech is used
instead (results in Section 3.3.1). Second, we study the effectiveness of different
features for the AGR problem. We investigate performance of the voice source
related feature (F0) under varying conditions (Section 3.3.2). Then, we evaluate
two types of the vocal tract related features: (a) first four formants with their
respective frequency and bandwidth; and (b) cepstral features: LPCCs, MFCCs
and PLPs (Section 3.3.3). Finally, we study integration of the voice source (F0)
with each of the two types of the vocal tract related features (Section 3.3.4).

3.2 Experimental Setup
Before presenting the results obtained for different audio features, we describe

the audio part of the BANCA database exploited to evaluate performance of the A-
AGR system, and provide information about data preprocessing and experimental
setup.
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3.2.1 Database
The A-AGR system was evaluated on an audio part of the BANCA database

(English corpus) comprising datasets of varying complexity [4]. The audio data
acquisition was performed using two microphones (poor-quality and good-quality)
under three different types of conditions:

1. Controlled: good-quality microphone, clean conditions;

2. Degraded: poor-quality microphone, stable conditions;

3. Adverse: good-quality microphone, background noise, arbitrary conditions.

In order to evaluate the performance of the system under clean conditions the 0
protocol (matched controlled training and test conditions) is established, as specified
in Table 3.1. We define three additional protocols: A, B, C each in two versions:
Deg and Adv for degraded and adverse conditions, respectively. The three protocols
differ with respect to the quality of data used for training, development and testing.
The idea is to first use the clean conditions data for training and development,
and test the system under noisy conditions (protocol A, mismatched training and
test conditions). In protocol B, the training is done with clean condition data
and the parameters of the system are tuned with noisy development data. Finally,
in protocol C both clean and noisy data are used for training (multi-condition
training). The BANCA database contains recordings collected from 52 subjects. In
order to evaluate the system on the same number of known and unknown subjects,
only a half of the subjects (26) were used for training. Then, all subjects (52)
were divided into two groups consisting of 16 and 36 subjects which were used for
development and testing. More information about the database and setup can be
found in Appendix A.

3.2.2 Analysis of Audio Data
The audio signal was sampled at 16kHz and analyzed in frames of 25ms using

a frame shift interval of 10ms. The informative part of the signal was obtained
using a speech/non-speech or voiced/unvoiced detection. For each utterance, the
speech/non-speech segmentation is obtained by first training a GMM with two
mixtures. The mixture with largest energy coefficient is labelled as speech and the
other as silence, and then followed by the classification of the frames. The RAPT
method algorithm was used both to obtain voiced frames and F0 estimates [60]
(details in Section 2.2.1). The values of F1-F4 and B1-B4 were determined using
linear prediction and dynamic programming [57] (details in Section 2.2.2.1). The
three cepstral features, namely LPCCs, MFCCs and PLPs, were extracted using the
HTK toolkit [70], and we analyzed their performance with respect to the number
(9, 13, 19) and type (static vs. static+delta) of cepstral coefficients included to the
feature vector. The choice of the particular order of cepstral features was motivated
by the previous studies. First, MFCCs with 9 initial coefficients were evaluated
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Pr
ot
oc
ol Set

ID
Conditions

TRAIN DEV TEST
0 Con0 Controlled Controlled Controlled
A DegA Controlled Controlled Degraded

AdvA Controlled Controlled Adverse
B DegB Controlled Degraded Degraded

AdvB Controlled Adverse Adverse
C DegC Controlled+Degraded Degraded Degraded

AdvC Controlled+Adverse Adverse Adverse
Protocol Item TRAIN DEV TEST
0,A,B,C Subjects Σ(F,M) 26(13,13) 16(8,8) 36(18,18)

Data per File 1.5s 1.3s 1.3s
0,A,B # Files 104 64 144
C # Files 104+64 64 144

Table 3.1. Experimental setup for different protocols. Abbreviations and symbols:
’Σ’=Total, ’F’=Females, ’M’=Males. Details can be found in Appendix A.

under clean conditions by Fussell [18]. Then, initial 13 coefficient are commonly used
in automatic speech recognition to characterize the smooth envelope of the short-
term spectrum (see Section 2.2.2.2). Typically, the voice source realted information
is captured between 14 and 19 coefficient. Thus, initial 19 coefficients are commonly
used in automatic speaker recognition system in order to model speaker information
present in the high-frequency region.

3.2.3 Classification
We employed the SVMs implemented in the LIBSVM library to perform gen-

der classification [9] (details in Section 2.4). The RBF kernel was used in case of
multi-dimensional feature vectors, and the linear kernel in case of one-dimensional
feature vectors. The parameters of the SVMs (error penalty C) and the RBF kernel
(variance γ) were estimated on the development set. However, in case of simple
almost linearly separable problems, the choice of C is of little importance. The a
posteriori class probabilities are estimated using the Platt’s method [47].

3.2.4 Performance Evaluation and Cue Integration
The A-AGR system is evaluated on the test set and its performance is expressed

as percentage of correct classification, i.e. classification accuracy. Each frame of
audio signal is assumed as a separate sample and is classified independently. As
a measure of confidence with which a sample is assigned to a particular class, the
a posteriori class probability is chosen. We report the results at a file level based
on 1.3s of speech segment or voiced speech segment extracted from each video file
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(KA = 129). The decision about gender for a single file is obtained by summing1

the frame values of the a posteriori probabilities for each class over the whole audio
segment, and then choosing the class with the highest score.

We also investigated the integration of F0 with the vocal tract realted features:
(a) at lower level, by concatenating the features and training a single classifier, and
(b) at higher level, by first training two independent classifiers, and then fusing their
outputs using a linear weighted combination method, such as sum, product or max
rule. In case of the high level integration, the decision about gender for a single file
is obtained according to Equation 2.41 where the evidence dij estimated for the i-th
classifier and the j-th class based on a single sample is substituted by the evidence
dALLij determined based on all samples in a sequence k = 1, . . . ,KA according to
Equation 2.45 for j ∈ {F,M} and i ∈ {F0, V TF}2. For example, the evidence for
the female class (j = F ), voice source features (F0) and sum rule is obtained as:

dALLF0,F =
∑KA
k=1 Prk(F |F0)(∑KA

k=1 Prk(F |F0)
)

+
(∑KA

k=1 Prk(M |F0)
) .

The weights for each classifier were determined to maximize performance of the
A-AGR system on the development set.

3.3 Results and Discussion
This section presents results obtained during experimental evaluation of the

A-AGR system. The results are followed by the discussion.

3.3.1 Frame Selection

First, we report the performances for two systems that differ in frame selec-
tion method for F0 and the cepstral features in Table 3.2. In the first system, a
speech/non-speech segmentation was used to select speech frames (contains both
voiced speech and unvoiced speech). The values of F0 for unvoiced frames were esti-
mated via interpolation, and among the linear, logarithmic and Fourier interpolation
method, the latter provided the best performance. In the second system, only voiced
speech frames were selected, and this system provided higher recognition rates for
all the evaluated features, especially under noisy condition. This is consistent with
observations made in the previous studies where better AGR performance have been
reported on the voiced phonemes compared to unvoiced phonemes [69, 18]. In ad-
dition, this also shows that selection of voiced speech frames can make the gender
recognizer robust towards mismatched training and testing conditions (protocol A).

1Preliminary experiments performed on the development set showed that summation performs
better than product and max function.

2Abbreviations: ’F’=Female, ’M’=Male, ’F0’=Voice Source Features (F0) and ’VTF’=Vocal
Tract Features.
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In the rest of the work, we report results for the system employing the voiced speech
frame selection.

3.3.2 Voice Source Related Features
We investigated suitability of F0 for the AGR problem under varying condi-

tions and the obtained results are shown in Table 3.3. When the AGR system was
trained exclusively on clean condition data (protocol 0 and A), F0 attained per-
fect recognition under controlled conditions, however recognition rate was highly
affected under noisy test conditions. In order to analyze the results, distributions of
F0 for females and males in the training set and in the three test sets (one for each
conditions) are presented in Figure 3.1. The perfect recognition under controlled
conditions is a consequence of almost an ideal match between F0 distributions for
the training and test data. Under degraded conditions, the low frequency noise was
also estimated as F0 what resulting in high degradation of performance for females
and perfect recognition for males. The adverse conditions data were collected in
noisy environment under which presumably subjects tend to raise their F0 in order
to make their voices more audible (Lombard effect [34]). As a result, the distribu-
tions of F0 for both females and males were shifted towards high values, and the
mismatch between data used for training and testing occurred. In this case, sig-
nificant decrease in performance for males and perfect recognition for females were
observed. The addition of noisy data to the training set (protocol C), decreased
the performance under degraded conditions, since more incorrect examples of F0
were introduced to the system. This suggest that the decrease in the performance
is mainly due to F0 estimation error in the degraded signal. On the other hand,
the performance under adverse conditions was increased, thus indicating that the
system tries to compensate for the effect of raised F0 values.

Data Type Feature Accuracy [%]
Prot. 0 Protocol A
Con0 DegA AdvA

Speech F0∗ 99.3 95.8 91.7
LPCC18∆ 94.4 89.6 79.2
MFCC19∆ 97.9 91.7 80.6
PLP19∆ 95.8 86.1 81.3

Voiced F0 100.0 95.8 93.1
LPCC18∆ 97.2 98.6 96.5
MFCC19∆ 97.9 97.9 93.1
PLP19∆ 98.6 98.6 97.2

Table 3.2. Performance of the AGR system using all speech frames (Speech) and
using only voiced speech frames (Voiced) for F0, LPCCs, MFCCs, and PLPs with
19 static and delta coefficients under three types of conditions: controlled, degraded
and adverse for protocol A. For LPCCs energy coefficient was not determined. ∗F0
for unvoiced frames was estimated using the Fourier interpolation method.
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Feature ID Accuracy [%]
Prot. 0 Protocol A Protocol C
Con0 DegA AdvA DegC AdvC

F0 Females 100.0 91.7 100.0 91.7 100.0
Males 100.0 100.0 86.1 98.6 88.9
Total 100.0 95.8 93.1 95.1 94.4

Table 3.3. Performance of the A-AGR system for F0. The results for the protocol
B are identical as for A, since the constant values of parameter C for the SVMs with
the linear kernel were assumed.
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Figure 3.1. Distributions of F0 values for females and males in the training set
containing controlled conditions data and the three test sets consisting of controlled
(Con0), degraded (DegA) and adverse (AdvA) data.
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Feature Accuracy [%]
Prot. 0 Protocol A Protocol B Protocol C
Con0 DegA AdvA DegB AdvB DegC AdvC

F0 100 95.8 93.1 95.8 93.1 95.1 94.4
F1-F4+B1-B4 92.4 89.6 85.4 88.2 84.7 88.2 86.1
LPCC18∆ 97.2 98.6 96.5 98.6 96.5 100 97.9
MFCC19∆ 97.9 97.9 93.1 97.9 93.1 98.6 99.3
PLP19∆ 98.6 98.6 97.2 98.6 97.2 97.9 98.6

Table 3.4. Performance of the A-AGR system for the voice source and vocal tract
related features. Symbol ∆ denotes use of both static and delta coefficients, e.g. for
PLP19∆ in total 19+19=38 coefficients were used. For LPCCs energy coefficient was
not determined.

3.3.3 Vocal Tract Related Features

We studied performance of two types of the vocal tract related features: (a) for-
mant features and (b) cepstral features under varying conditions, and the obtained
results are presented in Table 3.4.

3.3.3.1 Formant Related Features

The results obtained under controlled (protocol 0), degraded and adverse condi-
tions (protocolA) showed that performance of formant related features, namely first
four formant frequencies and bandwidths (F1-F4+B1-B4) significantly decreases
with the severity of the conditions and is inferior to performance of F0 under all
conditions. Further, the formant features were constantly worse than the cepstral
features (which is consistent with the previous studies [69]), especially under noisy
conditions. It is due possibly to unreliable estimate of the formant frequencies and
bandwidths. The tuning of SVM parameters (γ,C) using development set specific
for particular testing conditions (protocol B) slightly decreases performance of for-
mant features. The addition of noisy data to the training set (protocol C) shows a
trend similar as for F0.

3.3.3.2 Cepstral Features

We analyzed the cepstral features: LPCCs, MFCCs and PLPs, with respect to
the number (9, 13, 19) and type (static vs. static+delta) of cepstral coefficients.
The comparison of the results obtained under controlled (protocol 0), degraded
and adverse conditions (protocol A) is provided in Figure 3.2. First, it can be
observed that performance of all three cepstral features increases with the number of
exploited cepstral coefficients under all conditions.3 This trend is consistent with the

3The characteristics shown in Figure 3.2 are almost flat under controlled matched conditions
(Con0). This is a consequence of presenting results for file accuracy. However, the slight improve-
ments in performance were observed for frame accuracy. For instance, the following frame accu-
racies: 81.2%, 84.6%, 86.4% and 87.0% were obtained for PLP9∆, PLP13∆, PLP19 and PLP19∆,
respectively.
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results obtained on clean-condition data by Wu et al. [69]. However, it is important
to note that the increase of number of cepstral coefficients aids in performances
significantly more for degraded and adverse than controlled conditions. This leads
to the conclusion that detailed modelling of spectrum is more crucial for noisy than
clean-condition recordings. Second, the use of the delta coefficients in addition to
the static coefficients further improved performance for all three cepstral features
and under all conditions.3 This observation is consistent with the results obtained
on clean-condition data by Fussell et al. [18]. Consequently, the system employing 19
static and delta coefficients under mismatch noisy conditions can almost approach
the performance as under clean matched conditions. Furthermore, LPCCs come
out as more stable features than MFCCs and PLPs, in the sense that the amount
of degradation in performance due to reduction of number of cepstral coefficients is
significantly lower for LPCCs than for MFCCs and PLPs. This is possibly owing
to the differences in characterizing a smooth spectral envelope by these features.
In case of LPCCs, spectral peaks of the short-term spectrum are modelled directly,
whereas in case of MFCCs and PLPs, the spectrum resulting from human auditory
related processing is represented. Additionally, what can be useful for AGR, the
estimation of the spectral peaks based on the linear prediction is affected by F0 for
voiced speech segments, since formant frequencies and bandwidths are sensitive to
the value of F0. This needs further investigation.

The comparison of the results obtained for protocol B (tuning of SVM parame-
ters on noisy development data) with respect to the results obtained for protocol A
(mismatched conditions) is provided in Figure 3.3. The tuning of SVM parameters
(γ,C) using development set specific for the particular testing conditions slightly
improves the performance of the cepstral features with lower number of coefficients.

The comparison of the results obtained for protocol C (multi-condition training)
with respect to the results obtained for protocol A (mismatched conditions) is
presented in Figure 3.4. Not surprisingly, the performance of the system under
noisy conditions improved with multi-condition training. It can be observed that
with multi-condition training: (a) performance of the system is less dependent
upon the number of cepstral coefficients (i.e the amount of spectral details that
are modelled); (b) the system employing only static coefficients yields performance
closer to the system using both static and delta coefficients; and (c) using of both
static and delta coefficients further improves performance of the system. Thereby,
it can be hypothesized that modelling of more spectral detail and use of dynamic
features is more important under mismatched conditions.

As a result, in the rest of the thesis, we report our studies for cepstral features
with 19 coefficients including both static and delta coefficient to the feature vector.
In such setup, as summarized in Table 3.4, all three cepstral representations provided
similar performance under clean conditions, however PLPs were slightly better than
MFCCs and LPCCs under noisy conditions. Moreover, under clean conditions the
performance of F0 and cepstral features are comparable. However, under noisy
conditions cepstral features yield more robust system. Also, multi-condition training
helps more the cepstral-based system compared to F0-based system.
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Figure 3.2. Performance of the A-AGR system for the cepstral features with respect
to the number (9, 13, 19) and type (static vs. static+delta) of cepstral coefficients
included to the feature vector under degraded (DegA) and adverse (AdvA) conditions.
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Figure 3.3. Comparison of performance of the A-AGR system across protocols A
and B, i.e. training and development on controlled data vs. training on controlled
data and development on noisy data.
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Figure 3.4. Comparison of performance of the AGR system across protocols A and
C, i.e. training and development on controlled data vs. training on controlled+noisy
data (multi-condition training) and development on noisy data.
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3.3.4 Audio Cue Integration
We analyzed integration of the voice source (F0) with the two types of vocal tract

related features: (a) formant features and (b) cepstral features, and the obtained
results are presented in Table 3.5. The low level integration of F0 with the cepstral
features constantly yielded better system than integration of F0 with the formant
features. This is consistent with the inferior results obtained for formant features
in the previous section. Thus, further discussion is led for F0 intergated with the
cepstral features.

In case of protocol A (mismatch conditions), high level integration yielded more
resilient system than low level integration for all integrated features. While, for high
level integration, comparing different methods of combining the classifiers outputs,
sum and product rules provided higher recognition rates than max rule and, in addi-
tion, sum rule was superior to product rule. Results for integration of F0 and LPCCs
with respect to employed combination rule (sum, product or max rule) are presented
in Figure 3.5. For mismatch conditions (protocol A), integration of F0 with each of
the three cepstral features provides identical high accuracy (99.3%) under degraded
conditions, and combination of F0 with LPCC yields the best system (97.9%) un-
der adverse conditions. In case of protocol B, when SVM classifier weights were
determined based on development set specific for the test conditions, integration
of F0 with LPCC yielded overall the best system with almost perfect recognition
(99.3%) under both degraded and adverse conditions. In this case, the integration
of audio features increased performance when compared to the best single feature
system by 0.7% and 2.8% under degraded and adverse conditions, respectively. In
order to compare the importance of voice source and vocal tract related features in
the correct classification under varying conditions, we analyzed weights that were
assigned to each type of features. The weights for F0 when integrating F0 with
the cepstral features at high level using linear weighted summation are specified in
Table 3.6. When the weights were determined based on the controlled condition
development set (protocol 0 and A), higher importance was assigned to the voice
source (weights 0.65-0.7) than for vocal tract related features (weights 0.3-0.35).
This is not suprising, since F0 obtained perfect recognition under controlled con-
ditions. However, for the development set specific for the test conditions (protocol
B), higher importance was given to vocal tract related features under adverse con-
ditions. In case of multi-conditional training, both types of features were almost
equally important in the correct classification.

Finally, the studies on different training strategies revealed that instead of using
both clean and noisy data to train classifier (protocol C), it may be a better strategy
to use exclusively clean condition data for training, and then employ noisy data
to estimate classifier weights (protocol B). In all studied cases, recognition rate
was never reduced by determining weights on the development set specific for the
test conditions. However, the multi-condition training (protocol C) decreases the
performance for instance for the low level integration under degraded conditions
and for LPCCs under adverse conditions.
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Integrated IL Accuracy [%]
Features Prot. 0 Protocol A Protocol B Protocol C

Con0 DegA AdvA DegB AdvB DegC AdvC
F0 F1-F4+ B1-B4 Low 99.3 96.5 93.1 96.5 92.4 95.1 95.1
F0 LPCC18∆ Low 99.3 99.3 96.5 99.3 96.5 98.6 99.3

High 100 99.3 97.9 99.3 99.3 99.3 97.9
F0 MFCC19∆ Low 100 98.6 92.4 98.6 92.4 98.6 98.6

High 99.3 99.3 93.1 99.3 93.1 99.3 97.9
F0 PLP19∆ Low 99.3 99.3 94.4 99.3 94.4 98.6 98.6

High 100 99.3 96.5 99.3 97.2 99.3 97.9

Table 3.5. Performance of the A-AGR system for F0 integrated with the vocal tract
related features. Abbreviations: ’IL’=Integration Level.

Integrated IL Weight for F0 (wF0)
Features Prot. 0 Protocol A Protocol B Protocol C

Con0 DegA AdvA DegB AdvB DegC AdvC
F0 LPCC18∆ High 0.65 0.65 0.65 0.6 0.35 0.5 0.5
F0 MFCC19∆ High 0.65 0.65 0.65 0.7 0.55 0.5 0.4
F0 PLP19∆ High 0.7 0.7 0.7 0.65 0.25 0.5 0.4

Table 3.6. Wieghts obtained for F0 during integration of F0 with the cepstral
features at high level using linear weighted summation. The corresponding wieght
for the cepstral features is equal to wCEP = 1−wF0. Abbreviations: ’IL’=Integration
Level.
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Figure 3.5. Comparision of performance of the A-AGR system for single and in-
tegrated the voice source (F0) and the vocal tract related features (LPCCs) under
controlled (protocol 0), degraded and adverse (protocol B) conditions. The high
level integration is analyzed with respect to employed integration rule (sum, product,
max).
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3.4 Summary and Conclusions
In this chapter, we presented evaluation of different voice source and vocal

tract related features for robust automatic gender recognition. Through studies
performed on the BANCA corpus comprising datasets of varying complexity (con-
trolled, degraded and adverse), we showed that:

Frame Selection

• Modelling only voiced speech frames improves the robustness of the AGR
system towards mismatched conditions for both the voice source (F0) and
vocal tract related features (LPCCs, MFCCs, PLPs);

Voice Source Related Features

• F0 can provide perfect recognition under controlled conditions, however the
performance can degrade under noisy conditions;

Vocal Tract Related Features

• The cepstral features (LPCCs, MFCCs, PLPs) are superior to formant related
features (formant frequencies and bandwidths);

• The performance of the AGR system is less sensitive to the number of cep-
stral coefficients (i.e. the amount of spectral details being modelled) under
controlled conditions or with multi-condition training;

• Modelling of higher spectral details and the use of both static and dynamic
features makes the system robust towards noisy conditions;

Voice Source vs. Vocal Tract Related Features. Audio Cue Integration

• F0 and the cepstral features provide similar performance under clean condi-
tions, but cepstral features yield robust system in noisy conditions; PLPs were
slightly better than MFCCs and LPCCs under noisy conditions.

• Integration of F0 with the cepstral features performed better than integration
of F0 with the formant related features;

• When integrating audio cues, F0 was given more importance under clean
conditions, however in noisy (adverse) conditions giving more importance to
cepstral features yields a better system;

• The sum rule was found to be superior to product rule and max rule; the linear
weighted summation of F0 and LPCCs yielded overall the best AGR system
achieving almost perfect recognition (99.3%) under both degraded and adverse
conditions when the system was exclusively trained on clean conditions data
and the weights were adjusted on noisy data (protocol B).





Chapter 4

Vision-Based AGR Studies

In this chapter, we present experimental studies on different visual features for
AGR task. The evaluation of low-dimensional representations of face images, such
as eigenface and fisherface features, is performed in the framework of the V-AGR
system described in Chapter 2. First, motivation of the studies is discussed and
the main objectives are defined in Section 4.1. Then, experimenal setup is specified
in Section 4.2, and results obtained under varying conditions are presented and
discussed in Section 4.3. Finally, the main conclusions drawn from the studies are
summarized in Section 4.4.

4.1 Motivation and Objectives

In early studies in vision-based gender recognition, different feature representa-
tions of face images have been proposed, such as characteristics extrated from raw
image by ANNs or geometrical features, such as eyebrow thickness or nose width
(see discussion in Section 2.3). Nevertheless, these features provided unsatisfactory
performance and were computationally expensive. Latest studies in Automatic Face
Recognition (AFR) suggested the low-dimensional representation of face images ob-
tained by means of component analysis techniques as more robust and efficient. The
features obtained by principal component analysis (eigenface features) and linear
discriminant analysis (fisherface features) are the two most commonly used low-
dimensional representations of face images for AFR. The thorough evaluation of
these feature for AFR task showed that the eigenfaces provides high recognition rate
when constant face pose and lightning are preserved and tends to underperform un-
der varying conditions. Further, the fisherfaces achieved the superior performance
compared to the eigenfaces in case of the large variation in lightning and facial
expressions. The suitability of the eigenface features for the AGR problem was ex-
perimentally confirmed on clean condition data by Walawalkar et al. [68]. However,
for automatic gender recognition the low-dimensional representations have been sel-
dom evaluated under varying conditions. Alongside with the intention of studying
audio-visual AGR, the above statement motivated us to evaluate performance of
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the eigenfaces and fisherfaces under varying conditions (results are presented in
Section 4.3). In this work, we address the following questions:

1. What is the effect of varying conditions on the performance of the eigenface
and fisherface features? Which type of visual features is more robust towards
varying conditions?

2. What is the effect of training data conditions on the AGR accuracy? Is a
better strategy to train the AGR system on clean-condition or multi-condition
(clean+noisy) data? How much the quality of data influences the gender
information present in the visual features?

4.2 Experimental Setup
In this section, we first present the visual part of the BANCA database used

to evaluate performance of the V-AGR system followed by information about data
preprocessing and experimental setup.

4.2.1 Database
The V-AGR system was evaluated on a visual part of the BANCA database

(English corpus) comprising datasets of varying complexity [4]. The visual data
acquisition was performed using two cameras (poor-quality and good-quality) under
three different types of conditions:

1. Controlled: good-quality camera, uniform background and stable lighting;

2. Degraded: poor-quality camera, non-uniform background;

3. Adverse: good-quality camera, arbitrary conditions [35].

Examples of images from the BANCA database collected under controlled, degraded
and adverse conditions are presented in Figure 4.2, and a few more example images
can be found in Appendix A.

In order to evaluate the performance of V-AGR system under varying conditions
and determine the best strategy of training, we use the same four protocols defined
earlier for A-AGR system study. First, the 0 protocol with matched controlled
training and test conditions is established. Then, three additional protocols: A,
B, C are defined which differ with respect to the quality of data used for training,
development and testing. The protocol A with mismatched training and test data
conditions, contains controlled condition data for training and development, and
noisy condition data for testing. Next, the noisy data are used for development
(protocol B) and, finally, are added to the training set (protocol C, multi-condition
training). A summary of the protocols is given in Table 4.1. The BANCA database
contains recordings collected from 52 subjects, and the same number of known and
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(a) Controlled conditions (b) Degraded conditions (c) Adverse conditions

Figure 4.1. Examples of images from the BANCA database [4] collected under con-
trolled, degraded and adverse conditions. More images are presented in Appendix A.

(a) Controlled conditions (b) Degraded conditions (c) Adverse conditions

Figure 4.2. Automatically detected and extracted face regions from the BANCA
images presented in Figure 4.2.1.

unknown subjects is used for testing performance of the V-AGR system. More
information about the division of subjects and details about experimental setup
can be found in Appendix A.

4.2.2 Analysis of Visual Data

In order to extract a face region from an image, first an automatic frontal face
detector performing geometric normalization of the image in order to align eyes was
applied. Then, each image was cropped to a size of 64x80 in order to preserve only
deteced face region. Examples of automatically detected and extracted face regions
from the BANCA images are presented in Figure 4.2.1. For this purpose, tools
provided in the Torch3vision library were used [1]. The obtained face images were
first projected into an eigenspace and, then, fisherspace. The Principle Component
Analysis (PCA) was performed to obtain eigenface features. The number of features
was chosen to capture 99% of the data variations which, in this case, corresponds to
the first 116 eigenvectors. When the number of eigenvectors was increased above this
value no significant change in performance was observed on the development data
set. Then, the Linear Discriminant Analysis (LDA) was conducted to determine
fisherface features. Due to the fact that the informative part of the LDA features
is encoded in the first n − 1 vectors, where n is the number of classes, for gender
recognition problem each image was represented using only one feature.
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Pr
ot
oc
ol Set

ID
Conditions

TRAIN DEV TEST
0 Con0 Controlled Controlled Controlled
A DegA Controlled Controlled Degraded

AdvA Controlled Controlled Adverse
B DegB Controlled Degraded Degraded

AdvB Controlled Adverse Adverse
C DegC Controlled+Degraded Degraded Degraded

AdvC Controlled+Adverse Adverse Adverse
Protocol Item TRAIN DEV TEST
0,A,B,C Subjects Σ(F,M) 26(13,13) 16(8,8) 36(18,18)

# Images per File 5 5 5
0,A,B # Files 104 64 144
C # Files 104+64 64 144

Table 4.1. Experimental setup for protocols 0, A, B and C. Abbreviations and
symbols: ’Σ’=Total, ’F’=Females, ’M’=Males. Details can be found in Appendix A.

4.2.3 Classification

As in case of A-AGR system, we employed the SVMs implemented in the LIB-
SVM library to perform gender classification [9] (details in Section 2.4). The RBF
kernel was used in case of multi-dimensional feature vectors, and the linear kernel in
case of one-dimensional feature vectors. The parameters of the SVMs (error penalty
C) and the RBF kernel (variance γ) were estimated on the development set. How-
ever, as mentioned earlier, in case of simple almost linearly separable problems, the
choice of C is of small importance. The a posteriori class probabilities are estimated
using the Platt’s method [47].

4.2.4 Performance Evaluation

The V-AGR system is evaluated on the test set and its performance is expressed
as percentage of correct classification, i.e. classification accuracy. Each image is
assumed as a separate sample and is classified independently. As a measure of
confidence with which a sample is assigned to a particular class, the a posteriori
class probability is chosen. The results are reported at a file level based on 5 images
extracted from each video file (KV = 5). The decision about gender for a single file
is obtained by summing1 the image values of the a posteriori probabilities for each
class for 5 images, and then choosing the class with the higher score.

1Preliminary experiments performed on the development set showed that summation outper-
forms product and max function.
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Feature Accuracy [%]
Protocol 0 Protocol A Protocol B Protocol C

Con0 DegA AdvA DegB AdvB DegC AdvC
Eigenfaces 93.1 82.6 73.6 86.8 81.9 90.3 91.0
Fisherfaces 95.1 82.6 81.3 82.61 81.31 90.3 90.3

Table 4.2. Performance of the V-AGR system for the eigenface and fisherface fea-
tures. 1The results for the protocol B are identical as for A, since the same values of
parameter C for the SVMs with the linear kernel were determined.

4.3 Results and Discussion

In case of the V-AGR system, we studied two low-dimensional representations
of face images under varying conditions, namely the eigenfaces and fisherfaces. The
results obtained during the experiments are presented in Table 4.2. When the AGR
system was trained exclusively on clean conditions data (protocol 0 and A), both
features obtained good recognition rates under controlled conditions, however their
performances were heavily affected by degradation of conditions. The fisherfaces
provided superior performance to the eigenfaces, especially under adverse condi-
tions. This is consistent with the results obtained by Belhumeur et al. for AFR
problem [3]. It is due mostly to the fact that the fisherfaces are more robust to
large variation in lightning and facial expressions than the eigenfaces.

The tuning of SVM parameters (γ, C) using development set specific for par-
ticular testing conditions (protocol B) significantly improved performance of the
eigenfaces, such that they achieved better performance than the fisherfaces under
degraded and adverse conditions. On the other hand, no effect on performance
of the fisherfaces was observed. It is due to the fact that the fisherfaces are one-
dimensional feature for AGR and the SVMs with the linear kernel are used. In
consequence, influence of using noisy condition development set is limited to ad-
justing the error penalty C. In our studies, the same value of the parameter C was
determined for protocol A and B.

The multi-condition training (protocol C) significantly improved performance
of both the eigenfaces and fisherfaces, since new example of images with conditions
(such as lighting, background etc.) specific for test set were introduced to the sys-
tem during training. The eigenfaces and fisherfaces obtained identical performance
under degraded conditions, and the eigenfaces slightly outperformed the fisherfaces
under adverse conditions. It is important to note that under degraded and adverse
conditions for protocol C, the eigenfaces and fisherfaces achieved performance close
to results obtained under controlled conditions (0). From this observation, it can
be concluded that matching of training and test conditions is important for both
low-dimensional representations.
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4.4 Summary and Conclusions
In this chapter, we presented evaluation of two low-dimensional representations

of face images, namely the eigenfaces and fisherfaces for robust automatic gender
recognition. The studies performed on the BANCA database comprising datasets
of varying complexity (controlled, degraded and adverse) showed that:

• Performance of the AGR system significantly decreases for both the visual
features, i.e. eigenfaces and fisherfaces, with degradation of the conditions.
Furthermore, similar to earlier AFR studies, the fisherface were found to be
more robust to unseen and varying conditions;

• The use of noisy development set to tune SVM parameters aids in performance
for the eigenfaces; however, no effect on performance of the fisherfaces was
observed due to the fact that this feature has only one dimension for AGR
problem and the SVMs with linear kernel were used;

• The multi-condition training significantly improved performance for both the
eigenfaces and the fisherfaces with the eigenfaces being slightly better un-
der adverse conditions. In short, the match between training and test data
conditions is important for both the visual features.



Chapter 5

Audio-Visual AGR Studies

This chapter presents experimental studies on integration of audio and visual
features for AGR task. The evaluation of the different integration methods of audio
and visual cues is performed in the framework of AV-AGR system described in
Chapter 2. First, motivation of the studies is discussed and the main objectives are
defined in Section 5.1. Then, performance for the selected audio and visual features
is compared in Section 5.2. The experimental setup is specified in Section 5.3 and
the obtained results are presented and discussed in Section 5.4. Finally, the major
conclusions drawn from the studies are summarized in Section 5.5.

5.1 Motivation and Objectives
The previous studies on the AGR problem have considered the use of single

modality: audio or vision (see discussion in Section 1.1). Moreover, these works have
been performed mainly under clean conditions and the robustness of AGR systems in
real-world scenarios was seldom considered. However, in most typical applications,
both audio and visual signals are available. Therefore, ideally, an AGR system
should be able to exploit both modalities to improve robustness of the system.
Since each modality has different characteristics, audio-visual cues can provide a
more comprehensive description of a subject than a single modality. Moreover,
integration of the cues may yield a AGR system that is resilient to the degradation of
both, or even to temporal unavailability of one of the input signals. This motivated
us to conduct the audio-visual AGR studies and evaluate performance of the AV-
AGR system under varying conditions. Since, the choice of the most suitable audio
and visual features was thoroughly discussed in the framework of the uni-modal
AGR systems in the last two chapters, here we focus on different methods of fusing
the audio and visual cues at the classifier level with emphasis on the following
practical questions:

1. What is the effect of fusing the audio and visual information on the AGR
accuracy? How much complementary information is provided by the audio
and visual cues?
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2. What is the best method of integrating the audio and visual cues? What
is the effect of using different algebraic combination methods, such as sum,
product or max rule on the AGR accuracy? What is the effect of using
different weighting schemes, such as equal and unequal weighting on the AGR
accuracy?

3. What is the effect of varying conditions on the performance of the AV-AGR
system? Combination of which audio and visual feature is more robust to-
wards varying conditions?

4. Which type of information, audio or visual, is more important in the correct
classification under varying conditions?

5. What is the effect of training data conditions on the AV-AGR accuracy? Is a
better strategy to train the AGR system on clean-condition or multi-condition
(clean+noisy) data?

5.2 Comparision of Audio and Visual Features
In this section, we first compare the results obtained in the framework of the

uni-modal AGR systems in order to provide the background for further discussion
about integration of audio and visual cues. Performance of the A-AGR and V-AGR
system for selected features is summarized in Table 5.1. During the cue integration
studies, we evaluate different combinations of both types of the audio features,
namely the voice source (F0) and vocal tract related features (PLPs), with the
two visual features (eigenfaces, fisherfaces). The choice of PLPs as a representative
of the vocal tract related features is motivated by the fact that PLPs provided
better performance under noisy conditions than MFCCs and LPCCs. Further, the
best setup for PLPs is used, i.e. a feature vector contains 19th static and delta
coefficients (see Section 3.3.3). When comparing results for the A-AGR and V-AGR
system trained exclusively on controlled data (protocol 0 and A), it can be observed
that the audio features are superior to the visual features under all conditions.
Moreover, performance of all features decreased with degradation of data quality,
and the drop was much greater for the visual than the audio features. Under adverse
conditions, the difference between the PLPs and fisherfaces is equal to 15.9%, and
between the PLPs and eigenfaces to 23.6%.The tuning of SVM parameters using
the development set specific for particular testing conditions (protocol B) aided in
performance only in case of the eigenfaces. Further, the addition of noisy data to
the training set (protocol C), decreased performance for the audio features under
degraded conditions, and increased in all other cases. The improvement is most
significant for the visual features. The difference in performance between the PLPs
and fisherfaces is reduced to 8.3%, and between the PLPs and eigenfaces to 7.6%
(see Table 5.1).

Summarizing, the visual feature are much less robust to varying conditions than
audio features. While comparing results at file level, not insignificant is the amount
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Feature Accuracy [%]
Prot. 0 Protocol A Protocol B Protocol C
Con0 DegA AdvA DegB AdvB DegC AdvC

F0 100 95.8 93.1 95.8 93.1 95.1 94.4
PLP19∆ 98.6 98.6 97.2 98.6 97.2 97.9 98.6
Eigenfaces 93.1 82.6 73.6 86.8 81.9 90.3 91.0
Fisherfaces 95.1 82.6 81.3 82.6 81.3 90.3 90.3

Table 5.1. Performance of the A-AGR and V-AGR system for selected features.

of data samples available for each modality. The audio modality provides large
amount of data (KA = 129), whereas visual modality offers smaller number of rel-
atively richer samples (KV = 5). While comparing results obtained at sample level
(for a single frame or image), the difference in performance between the audio and
visual features is smaller1 than at file level, however the A-AGR system consistently
outperformed the V-AGR system under all conditions.

5.3 Experimental Setup

In this section, we provide information about the database and the AV-AGR
system setup used during the experiments. In case of the analysis of audio and
visual data the same setup was preserved as described in Sections 3.2.2 and 4.2.2,
respectively.

5.3.1 Database

The AV-AGR system was evaluated simultaneously on both the audio and the vi-
sual part of the BANCA database (English corpus) [4]. As metioned in the previous
chapters, data acquisition was performed using two cameras and two microphones
under three different types of conditions:

1. Controlled: good-quality microphone and camera, clean audio conditions, uni-
form background and stable lighting;

2. Degraded: poor-quality microphone and camera, stable audio conditions, non-
uniform background;

3. Adverse: good-quality microphone and camera, background noise, arbitrary
conditions [35].

1Difference in accuracy at sample level (frame, image) between the best audio and the best
visual features is equal to 1.1%, 8.7% and 6.2% under controlled, degraded and adverse conditions
(protocol 0 and A), respectively.



58 CHAPTER 5. AUDIO-VISUAL AGR STUDIES

Examples of images from the BANCA database collected under controlled, degraded
and adverse conditions are presented in Figures 4.2.1. In order to evaluate perfor-
mance of AV-AGR system under varying conditions and determine the best strategy
of training, the four identical protocols are used as in case of the A-AGR and V-AGR
system. A summary of these protocols is given in Tables 3.1 and 4.1 for the audio
and the visual part of the database, respectively. More information about division
of subjects and details about experimental setup can be also found in Appendix A.

We report the results at a file level based on 1.3s of voiced speech segment and
5 images extracted from each video file. The decision about gender for a single file
is obtained based on the a posteriori class probabilities estimated at file level for
each modality as described in Section 2.5.

5.3.2 System Setup

As described in Section 2.5.1, the AV-AGR system in this work is created by
fusing evidences from the two modalities at the high level, after the single-cue classi-
fication based on SVMs has been performed. As a measure of confidence with which
a subject was assigned to a particular class, the a posteriori class probability was
chosen. The confidence measures with which a subject was assigned to a particular
class from the A-AGR and V-AGR system were integrated using a weighted combi-
nation method, such as sum, product or max rule to provide the final decision based
on both modalities (details in Section 2.5.1). Additionally, we considered equal or
unequal weighting of modalities during the experiments, and the latter were per-
formed in order to answer the question of different importance of the modalities in
the correct classification. In case of unequal weighting of modalities, the weights
were determined to maximize performance of the AV-AGR system on the devel-
opment set. Each weight can take a value between zero and one with the step of
0.05. In other cases, the same setup was preserved as described in Sections 3.2.3
and 4.2.3, respectively.

5.3.3 Performance Evaluation

The AV-AGR system is evaluated on the test set and its performance is expressed
as percentage of correct classification, i.e. classification accuracy. As in case of uni-
modal AGR systems, each frame of audio signal and each image is assumed as a
separate sample and is classified independently. As a measure of confidence with
which a sample is assigned to a particular class, the a posteriori class probability
is chosen. We report the results at a file level based on: (a) 1.3s of speech segment
or voiced speech segment (KA = 129), and (b) 5 images (KV = 5), extracted from
each video file. The decision about gender for a single file is obtained according
to Equation 2.41 where the evidence dij estimated for the i-th classifier and the
j-th class based on a single sample is substituted by the evidence dALLij determined
based on all samples in audio and visual sequences according to Equation 2.45 for
j ∈ {Female,Male} and i ∈ {Audio, V ision} as described in Section 2.5.1.
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5.4 Results and Discussion

For the AV-AGR system, we evaluated different combinations of audio (F0,
PLPs) and visual (eigenfaces, fisherfaces) features. In the framework of protocol A
(mismatch conditions), we compared different algebraic methods of combining es-
timates of the a posteriori probabilities provided by the uni-modal AGR systems,
such as sum, product or max rule. The sum and product rule were vastly superior
to the max rule for all combinations of audio and visual features and under all con-
ditions. In addition, the sum rule provided better performance than the product
rule for F0 integrated with each of the visual features, and comparable performance
as product rule for PLPs integrated with the visual features. Figure 5.1 shows the
comparison of the results obtained for combinations of F0 and PLP19∆ with the
eigenfaces under varying conditions.

Moreover, during the experiments, we considered equal or unequal weighting of
modalities. Not surprisingly, the unequal weighting outperforms the equal weighting
of modalities for all combinations of features and under all conditions. The difference
in the performance between these two types of weighting increases with the severity
of conditions. Figure 5.2 shows the comparison of the performance for equal and
unequal weighting using sum rule. In the rest of the discussion, we restrict ourselves
to sum rule with unequal weights determined on the development set.

The performance of the AV-AGR system for different types of features under
varying conditions is specified in Table 5.2 and compared with performance of the
uni-modal AGR systems in Figure 5.3. The combinations of F0 with each of the
visual features attained perfect recognition rate under controlled conditions, how-
ever under noisy conditions their performances are inferior to results obtained for
integration of PLPs with the visual features. This characterstic is clearly inherited
from the A-AGR system based on the voice source related features (F0). The inte-
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Figure 5.1. Performance of the AV-AGR system with respect to employed inte-
gration rule (sum, product, max) under controlled, degraded and adverse conditions
(protocols 0 and A). The presented results were obtained for unequal weighting of
modalities.
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Figure 5.2. Performance of the AV-AGR system with respect to employed type
of modality weighting (equal or unequal weighting) under controlled, degraded and
adverse conditions (protocols 0 and A). The presented results were obtained for the
sum rule.
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Figure 5.3. Comparision of performance of the uni-modal AGR systems and the
AV-AGR system under controlled, degraded and adverse conditions (protocols 0 and
A). The presented results were obtained for the audio and visual features integrated
using the linear weighted summation of modalities where the weights were determined
based on the development sets.

gration of PLPs with each of the visual features yielded a resilient system that at
least preserved the performance of the best uni-modal AGR system under all condi-
tions. Integration of PLPs with the eigenfaces improved performance by 0.7% when
comparing to the A-AGR system under both degraded and adverse conditions, and
by 16.7% and 24.3% while comparing to the V-AGR system under degraded and
adverse conditions, respectively. The relatively small improvement of performance
compared to the A-AGR system and the large improvement of performance com-
pared to the V-AGR system is due to the fact that the A-AGR system is superior
to the V-AGR system under all conditions. As presented in Table 5.3, the audio
features get higher weights than the visual features and their importance in correct
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classification increases with degradation of the data. Future work will address the
problem of improving the robustness of the V-AGR system.

When the weights were determined based on the development set specific for
the test conditions (protocol B), importance of the audio features increased for
all combination of the audio and visual features and under all conditions. For
integration of the audio features with the eigenfaces, the visual information was
entirely neglected under adverse conditions. The increase of the weights for audio
features slightly improved results only for the combination of F0 with the eigenfaces,
namely to the level of performance of the A-AGR system employing F0. However,
at the same time, the performances of all other combinations of features decreased
or, in the best case, remained unchanged. It may be disadvantageous because of
the visual system.

Finally, when using both clean and noisy data to train the classifiers (protocol
C), the performance of the AV-AGR system decreased under degraded conditions
compared to protocol A, except for the integration of PLPs with the fisherfaces
for which perfect recognition was attained and performance increased by 2.1% and
9.7% compared to the A-AGR and V-AGR system, respectively. On the other
hand, the performance under adverse conditions increases for all combination of
features compared to protocol A. The almost perfect recognition was obtained for
the combination of PLPs with the fisherfaces and, in this case, performance of the
AV-AGR system increased by 0.7% and 9.0% compared to the A-AGR and V-AGR
system, respectively. The weights for audio features decreased for all combination
of features and under all conditions compared to protocol B.

5.5 Summary and Conclusions

In this chapter, we studied different methods of integration the audio (such as F0
and PLPs) and visual (such as eigenfaces and fisherfaces) cues for robust automatic
gender recognition. Recognition studies performed on the BANCA corpus com-
prising datasets of varying complexity (controlled, degraded and adverse) showed
that:

• Combination of PLPs with the visual features yields a resilient system that
at least preserved the performance of the best uni-modal AGR system under
both clean and noisy conditions;

• Among the combination methods, the sum and product rules provide com-
parable results and both rules were vastly superior to the max rule; the un-
equal weighting of modalities yields better system than the equal weighting
of modalities;

• The combinations of F0 with each of the visual features attained perfect recog-
nition under controlled conditions, however the combination of PLPs with the
visual features provided superior performance under noisy conditions;
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Integrated Features Accuracy [%]
Prot. 0 Protocol A Protocol B Protocol C
Con0 DegA AdvA DegB AdvB DegC AdvC

F0 Eigenfaces 100 98.6 92.4 97.2 93.1 93.1 96.5
F0 Fisherfaces 100 97.2 95.1 97.2 93.8 97.9 97.9
PLP19∆ Eigenfaces 99.3 99.3 97.9 98.6 97.2 97.2 98.6
PLP19∆ Fisherfaces 98.6 98.6 97.9 98.6 97.9 100 99.3

Table 5.2. Performance of the AV-AGR system for protocols 0, A, B, C. The
presented results were obtained for the audio and visual features integrated using the
linear weighted summation of modalities where the weights were determined based on
the development sets. The corresponding weights for the audio features are presented
in Table 5.3.

Integrated Features Weight for audio features (wAudio)
Prot. 0 Protocol A Protocol B Protocol C
Con0 DegA AdvA DegB AdvB DegC AdvC

F0 Eigenfaces 0.80 0.80 0.80 0.90 1.00 0.50 0.90
F0 Fisherfaces 0.90 0.90 0.90 0.90 0.95 0.80 0.80
PLP19∆ Eigenfaces 0.75 0.75 0.75 0.95 1.00 0.50 0.85
PLP19∆ Fisherfaces 0.90 0.90 0.90 0.95 0.95 0.75 0.75

Table 5.3. Weights obtained for the audio features during integration of the au-
dio (F0, PLPs) and visual features (eigenfaces, fisherfaces) using the linear unequal
weighted summation. The corresponding weight for the visual feature is equal to
wV isual = 1 − wAudio. The corresponding results for the AV-AGR system are pre-
sented in Table 5.2.

• For realistic scenarios, in case of availability a set of data of quality specific
for testing conditions during a training phase, a better strategy is to perform
a multi-condition training (protocol C).



Chapter 6

Conclusions

In this work, we studied a multi-modal AGR system based on audio and visual
cues and studied its performance in realistic scenarios. First, in the framework
of two uni-modal AGR systems, we analyzed robustness of different audio (pitch
frequency, formant and cepstral representations) and visual (eigenfaces, fisherfaces)
features under varying conditions. Then, we built an integrated audio-visual system
by fusing information from each modality at the classifier level using different com-
bination rules and type of weighting. Our studies were conducted on the BANCA
database comprising datasets of varying complexity (controlled, degraded and ad-
verse). In the framework of the uni-modal AGR systems, we showed that:

• the audio-based system is more robust than the vision-based system, and its
resilience to noisy conditions is increased by modelling only the voiced speech
frames;

• in case of audio, the cepstral features are superior to the pitch frequency and
formant features, although the pitch frequency obtained perfect recognition
under clean conditions; PLPs yields slightly better system compared to other
cepstral features;

• for the cepstral features, modelling of higher spectral details and the use
of both static and delta coefficients made the system robust towards noisy
conditions;

• in case of vision, the fisherfaces outperformed the eigenfaces under degraded
and adverse conditions.

When evaluating different cue integration methods for the audio-visual AGR sys-
tems, we showed that:

• the sum and product combination rule provide comparable results, and both
rules are vastly superior to the max rule;

• the unequal weighting of modalities yields better system than the equal weight-
ing of modalities.
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Finally, the integration of audio and visual cues yielded a robust system that pre-
served the performance of the best modality in clean conditions and helped in im-
proving performance in noisy conditions (combination of the PLPs and eigenfaces
provided the very high performance of 99.3% and 97.9% under degraded and ad-
verse conditions, respectively). Summarizing, the careful selection of the audio and
visual features and integration of the multi-modal cues yielded the resilient AGR
system applicable in practical applications.

6.1 Future Work
The work presented in this thesis can be extended in a number of directions:

• the audio-based AGR system:
- in case of the formant related features, the formant frequency and band-

width were studied. The addition of the third parameter, namely amplitudes
of the formants may improve results obtained for the formant features;

• the vision-based AGR system:
- performance of the system may be improved by usage of a more robust

automatic face detector that will be invariant to pose and rotation of a face;
- other possible representations of face regions may be investigated, for

instance features based on a texture analysis such as the local binary patterns
(LBPs) [44] which demonstrated the high performance in Automatic Face
Recognition systems [35];

• the audio-visual AGR system:
- other types of weights may be investigated, such as the dynamic weights

which are determined separately for each sample such as inverse of entropy,
or can be found using the Dempster-Shafer method [31].



Appendix A

BANCA Database

In this work, we used the BANCA database (English corpus) which contains
datasets of varying complexity [4, 16]. The data acquisition was performed using
two cameras and two microphones under three different types of conditions:

1. Controlled: good-quality microphone and camera, clean audio conditions, uni-
form background and stable lighting;

2. Degraded: poor-quality microphone and camera, stable audio conditions, non-
uniform background;

3. Adverse: good-quality microphone and camera, background noise, arbitrary
conditions [35].

Examples of images from the BANCA database collected under controlled, degraded
and adverse conditions are presented in Figure A.1.

In each conditions, 4 sessions were scheduled during which 2 recordings from 52
subjects (26 females, 26 males) were collected. Subjects were asked to say a random
12 digit number, their name, address and date of birth [16]. The BANCA recordings
were divided into the four random subsets: S1, S2, L1, L2, with respect to subject’s
id as it is presented in Table A.1. In order to evaluate the system on the same
number of known and unknown subjects, only a half of the subjects, 26 (subsets
S1+L1), were used for training. Then, all 52 subjects were split into two groups
consisting of 16 (S1+S2) and 36 (L1+L2) subjects which were used for development
and testing.

In order to evaluate performance of the system under clean conditions the 0
protocol (matched controlled training and test conditions) was established. Then, to
determine a strategy of training that will yield the most robust system under varying
conditions, three additional protocols: A, B, C were defined each in two versions:
Deg and Adv for degraded and adverse conditions, respectively. As specified in
Table A.2, the three protocols differ with respect to the quality of data used for
training, development and testing. The idea was to first use the clean conditions
data for training and development, and test the system under noisy conditions
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(a) Controlled conditions.

(b) Degraded conditions

(c) Adverse conditions

Figure A.1. Examples of images from the BANCA database [4] collected under
controlled, degraded and adverse conditions.

Subjects’ Number of subjects BANCA Subjects’ id
Group ID Total Female Male Female Male

S1 8 4 4 03,06,16,22 32,34,35,40
S2 8 4 4 07,11,14,17 30,33,45,51
L1 18 9 9 01,05,08,15,19,21,23,25,26 28,29,38,41,42,46,47,48,52
L2 18 9 9 02,04,09,10,12,13,18,20,24 27,31,36,37,39,43,44,49,50

Table A.1. Division of the BANCA database into the four random subsets with
respect to subject’s id (idBANCA = 10xx, where xx is specified in the tabel) [4].

(protocol A, mismatched training and test conditions). In protocol B, the training
is done with clean condition data and the parameters of the system are tuned with
noisy development data. Finally, in protocol C both clean and noisy data are used
for training (multi-condition training).
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P
ro

to
co

l Set
ID

Conditions BANCA Session Subjects’ Group

TRAIN DEV TEST TRAIN DEV TEST TRAIN DEV TEST

0 Con0 Con. Con. Con. 1,2 3,4 3,4 S1,L1 S1,S2 L1,L2
A DegA Con. Con. Deg. 1,2 3,4 7,8 S1,L1 S1,S2 L1,L2

AdvA Con. Con. Adv. 1,2 3,4 11,12 S1,L1 S1,S2 L1,L2
B DegB Con. Deg. Deg. 1,2 7,8 7,8 S1,L1 S1,S2 L1,L2

AdvB Con. Adv. Adv. 1,2 11,12 11,12 S1,L1 S1,S2 L1,L2
C DegC Con.+Deg. Deg. Deg. 1,2+5,6 7,8 7,8 S1,L1+S1,S2 S1,S2 L1,L2

AdvC Con.+Adv. Adv. Adv. 1,2+9,10 11,12 11,12 S1,L1+S1,S2 S1,S2 L1,L2
Protocol Item TRAIN DEV TEST
0,A,B,C Subjects Σ(F,M) 26(13,13) 16(8,8) 36(18,18)

Audio Data per File 1.5s 1.3s 1.3s
# Images per File 5 5 5

0,A,B # Files 104 64 144
Audio Data Total 156s 84s 188s
# Images Total 520 320 720

C # Files 104+64 64 144
Data Total 252s 84s 188s
# Images Total 840 320 720

Table A.2. Experimental setup for protocols 0, A, B and C. Abbreviations and sym-
bols: ’Con.’=Controlled, ’Deg.’=Degraded, ’Adv.’=Adverse, ’Σ’=Total, ’F’=Females,
’M’=Males.
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