
From Object Categories to Grasp Transfer Using Probabilistic

Reasoning

Marianna Madry, Dan Song and Danica Kragic

Abstract— In this paper we address the problem of grasp
generation and grasp transfer between objects using categor-
ical knowledge. The system is built upon an i) active scene
segmentation module, able of generating object hypotheses and
segmenting them from the background in real time, ii) object
categorization system using integration of 2D and 3D cues,
and iii) probabilistic grasp reasoning system. Individual object
hypotheses are first generated, categorized and then used as the
input to a grasp generation and transfer system that encodes
task, object and action properties. The experimental evaluation
compares individual 2D and 3D categorization approaches with
the integrated system, and it demonstrates the usefulness of the
categorization in task-based grasping and grasp transfer.

I. INTRODUCTION

Household environments pose serious challenges to robot-

ic perception and manipulation: objects are difficult to locate

and manipulate due to the unstructured settings, variable

lighting conditions and complex appearance properties. Al-

though some excellent examples of finding and manipulating

a specific object in a scene have been reported in the

literature [1][2], the aspect of generalization have not been

addressed properly. No system is capable of flexibly and

robustly, in realistic settings, finding objects that fulfill a

certain functionality thus executing tasks such as “Robot,

give me something to hammer with.” or ”Robot, bring

me something to drink from.”

The aspect of function is related to that of affordances [3]

and has been addressed frequently in works that learn re-

lations between objects and actions [4][5][6][7]. However,

none of these consider the aspect of task in their model:

what the agent wants to do with an object will affect the

type of action (grasp) to apply. In this case, the task will

be constraining the action space - not just any grasp can

be applied on the object, see Fig. 1. Another closely related

example is finding something to hammer-with or pour-to that

relates to the notion of functional categories that have been

addressed to a limited extent in computer vision [8][9].

In this paper, we present work on encoding object cat-

egorical knowledge with task and action related reason-

ing. Knowledge of object category facilitates action (grasp)

transfer: i) detecting an object that affords pouring may

be pursued at the categorical level, or ii) knowing how to

grasp an object that affords pouring may be transferred to

another object that belongs to the same category. We build

upon our previous work [10][11][12], where we developed
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Fig. 1. Grasping a cup: (a) pouring and (b) hand-over task (hand should
not block the opening), and a screwdriver: (c) hand-over and (d) tool-use

task (hand should grasp the handle).

a probabilistic grasp reasoning system. The system models

the conditional dependencies between the tasks, actions and

objects taking into account the constraints posed by each. In

previous work, we concentrated on theoretical problems of

structure learning in graphical models without considering

the aspect of real sensory information extracted in natural

scenes.

In this paper we present an integrated approach to task-

oriented grasp reasoning and categorization, with the novel

aspect of grasp transfer. The contributions of the proposed

system are that:

• we enable a robot to choose the objects in a 3D scene

that afford the assigned task while

• planning the grasp that satisfies the constraints posed

by the task;

• grasp knowledge can be transferred between objects that

belong to the same category, even under considerable

differences in appearance and physical properties.

Our system integrates 2D and 3D visual information and

captures different object properties (appearance, color, shape)

thus making the categorization process robust in a real-world

scenario. We show that the system can successfully discrimi-

nate between objects sharing similar properties but affording

different tasks, such as a carrot and a screwdriver that are

structurally similar but fulfill different functions (see Fig. 4).

The paper is organized as follows: In Sec. II we present

the probabilistic reasoning framework and in Sec. III object

categorization system. Sec. IV outlines the experimental

evaluation and Sec. V concludes the paper.

A. The system

Our system consists of three main parts, see Fig. 2:

• Visual Front End: here, an active robot head equipped

with foveal and peripheral cameras gives input to the

real-time scene segmentation system [13];

• Categorization: the system provides information about

object class using various object properties such as

appearance, color and shape;

• Reasoning system: the probabilistic grasp reasoning

system, that encodes task-related grasping [10][11].



Fig. 2. Visual Object Category-based grasp generation for an arbitrary scene: objects are first segmented and categorized using our 2D-3D Object
Categorization Systems (OCSs). Then, grasping hypotheses are generated taking the task into account. The image is best viewed in color.

We start by providing the necessary details for our proba-

bilistic reasoning system.

II. ENCODING TASK CONSTRAINTS

In the previous work [10][11][12], we have developed

a probabilistic framework for embodiment-specific grasp

representation. We model the conceptual task requirements

using a Bayesian network through conditional dependencies

between task, object, action and constraints posed by each.

The model is trained using a synthetic database of objects,

grasps generated on them, and the task labels provided

by a human. The data generation is based on the toolbox

BADGr [14] providing 3D object shape approximation, grasp

planning, execution and also grasp-related feature extraction

and task labeling. We refer the reader for the detailed process

of data generation to [10].

Both the structure and the parameters of the BN are

learned from the database. The BN structure encodes de-

pendencies among the set of task-related variables, and the

parameters encode their conditional probability distributions.

Fig. 3 shows the learned structure of the BN with the features

listed in Table I. Once trained, the model can be used to

infer conditional distribution of one variable based on a

partial or complete observation of others. This allows us to

select object (e.g. by P (obcl|task)) and plan grasp (e.g. by

P (pos, dir|task)) in a task-oriented manner.

task

dirobcl

size pos

pshcv coc fvol
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Fig. 3. The structure of the Bayesian network task constraint model.

TABLE I

FEATURES USED FOR THE TASK CONSTRAINT BAYESIAN NETWORK.

Name Dimension States Description

task - 5 Task Identifier

obcl - 7 Object Category

size 3 6 Object Dimensions

dir 4 15 Approach Direction (Quaternion)

pos 3 17 Grasp Position

fcon 11 3 Final Hand Configuration

pshcv 3 3 Grasp Part Shape Vector

coc 3 8 Center of Contacts

fvol 1 4 Free Volume

Our previous work was done in simulation and the infer-

ence engine assumed the object class unknown. Learning of

the network structure in [11] revealed the importance of the

categorical information. This motivated us to integrate the

object categorization module with the task-constraint grasp

reasoning system.

III. 2D-3D OBJECT CATEGORIZATION SYSTEM

Many household objects that afford different tasks have

similar shape or appearance properties making them hard to

discriminate. For example, a mug and a roll of toilet paper are

alike in shape, but only the former object affords pouring a

liquid to (see Fig. 4). Thus, our Object Categorization System

(OCS) integrates visual descriptors capturing different object

properties such as appearance, color, shape using both RGB

images (2D) and point cloud data derived from disparity

maps (3D).

As shown in Fig. 1, we first build a single cue OCS for

each feature descriptor which are then integrated for the final

categorization. All single cue OCSs implement the following

methodology: (a) data acquisition (Sec. III-A), (b) feature

extraction (Sec. III-B), and (c) classification (Sec. III-C). The

methods used to integrate these single cue OCSs will be

described in Sec. III-D.

A. Scene Segmentation

Prior to categorization, object hypotheses are first gener-

ated using a multi-cue scene segmentation system [13]. The

method relies on attentional mechanisms to direct cameras

towards regions of interest, subsequently grouping areas

close to the center of fixation as the foreground. Points of

the disparity maps are then labeled as either the object (fore-

ground), supporting plane (flat surface) or the background.

The segmented point cloud is further processed to remove

outliers and equalize point density. We rely on the statistical

outlier removal and voxel grid filters from PCL [15]. The re-

sulting point cloud contains approx. 2000 points representing

the visible part of the object. Our system does not require

reconstruction of the whole object from its partial view

as in [16][17]. Such reconstruction methods often assume

objects to be symmetrical which is not always the case.

B. Feature Extraction

The object representation is crucial for achieving robust

categorization. Several descriptors have been proposed in

the field of computer vision to encode object appearance



Fig. 4. Examples of physically similar objects that afford different tasks.

(SIFT [18], textones [19]), color (opponentSIFT [20]) and

contour shape (HoG [21]). Studies on 2D cue integration [22]

show that contour- and shape-based methods are adequate for

handling the generalization requirements needed for object

categorization, however they are not robust to occlusions. On

the other hand, appearance- and color-based descriptors have

been successfully applied in object (instance) recognition

and detection [18], [19]. However, their performance drops

significantly in case of clutter and illumination changes. In

object retrieval and computer graphics, a number of 3D shape

descriptors have been proposed [23]. Only a few of them are

applicable to real 3D data that covers only the visible part

of the object: spin images [24], RSD [16], FPFH [25][26].

Motivated by the fact that the object representation should

have high discriminative power, be robust to real world

condition and diverse for cue integration, we extract from

a segmented part of an image multiple 2D descriptors

encoding different object attributes: appearance (SIFT), col-

or (opponentSIFT), contour shape (HoG). The final object

representation for 2D descriptors follows a concept of the

spatial pyramid [27]. The 3D shape properties of an object

are obtained by applying the FPFH descriptor [25] to each

3D point in the segmented point cloud. It was shown that

the normal-based descriptors obtain high performance for the

task [26]. To obtain the final object representation, a bag-of-

words BoW model [28] is employed.

C. Classification

Motivated by the histogram-based object representation

(BoW), we use for classification SVMs with a χ2 kernel

successfully applied in previous studies [20][21][17]. For the

purpose of cue integration, we need information about the

confidence with which an object is assigned to a particu-

lar class. Several studies were devoted to find confidence

estimates for large margin classifiers [29]. In principle,

they interpret the value of the discriminative function as a

dissimilarity measure between the sample and the optimal

hyperplane. In this work, we use the One-against-All strategy

for M -class SVMs which was shown to be superior to other

methods [30]. The confidence measure for a sample x is

calculated as:

C(x) = Dj ∗ (x)− max
j=1...M,j 6=j∗

{Dj(x)} (1)

where Dj(x) is equal to the difference between the average

distance of the training samples to the hyperplane and the

distance from x to the hyperplane.

D. Cue Integration

Various cue integration approaches have been applied

to object recognition and categorization based on 2D da-

ta [29][31]. In contrast to the low level integration that op-

erates directly on feature vectors, the high level integration,

that is commonly accomplished by an ensemble of classifiers

or experts, have been shown to be more robust to noisy

cues. Further, the classifier outputs can be combined using

linear [29] or nonlinear [31] techniques.

Our object categorization system takes a high level ap-

proach integrating evidences from the single cue OCSs.

We use methods based on an combination of classifier

outputs. We evaluate both the linear and nonlinear algebraic

techniques.

In case of the linear techniques, the total support for

each class is obtained as a linear weighted sum, product or

max function F (·) of the evidences provided by individual

classifiers. The final decision is made by choosing the class

with the strongest support. Let us assume that dij is an

evidence provided by classifier i for a category j, and wi

is a weight for classifier i (both are normalized to sum up

to one for all L classifiers and M categories), then the class

with the strongest support j0 ∈ {1, . . . ,M} is chosen as:

j0 = arg max
j=1,...,M

F(d1j , . . . , dLj ;w1, . . . , wL)
∑M

j=1
F(d1j , . . . , dLj ;w1, . . . , wL)

. (2)

The weights wi|i=1,...,L are estimated during training.

In case of the nonlinear techniques, we have used an

approach where an additional SVM classifier is trained to

model the relation between evidences provided by the dif-

ferent single cue OCSs [31]. The outputs from the single cue

OCSs are concatenated to build a feature vector that is fed to

the subsequent SVM classifier. During training, parameters

of the nonlinear function F (·), equal to the classifier kernel

function, are estimated. We evaluated the performance of the

following three nonlinear functions: (a) radial basis function

(RBF), (b) χ2 function, and (c) histogram intersection.

Linear methods are simple and have low computational

complexity. However, to infer weights wi|i=1,...,L, an exhaus-

tive search over parameter values is needed which becomes

an intractable task for a large number of cues. The nonlinear

methods owing to more complex function may better adapt

to the varying properties of the cues. However, they also

require a larger training dataset which may be infeasible for

real world scenarios.

IV. EXPERIMENTAL EVALUATION

First, we present the dataset and experimental setup in

Sec. IV-A and IV-B. Then, we study robustness of different

2D and 3D descriptors in Sec. IV-C followed by a systematic

evaluation of several 2D-3D integration strategies in Sec. IV-

D. Further, we demonstrate grasp generation on novel objects

based on categorical information. We also show how the

grasp knowledge can be transfered between objects that

belong to the same category. Finally, we study performance

of the integrated system in realistic scenario for multiple

objects, scenes and tasks in Sec. IV-E.

A. Database

Most of the available 2D-3D object databases contain

unsuitable object classes to demonstrate the category-based



Fig. 5. Examples of objects used to create the database presented in Section IV-A. Different objects were
chosen for each category in order to capture variations in appearance, shape and size within each class. The data
for all the 140 objects can be viewed at our web site http://www.csc.kth.se/~madry/research/
stereo_database/index.php.

(a) (b)

Fig. 6. Examples of imperfect seg-
mentation in both 2D and 3D: (a) on-
ly a part of an object is detected,
or (b) the segmentation mask contains
background points (background points
are marked in red).

task-directed grasping [17][32][33]. We collected a new

database with objects chosen from everyday categories.

The dataset contains a number of objects that are similar

in shape and appearance, but afford different tasks (e.g.

ball/orange, orange/carrot, carrot/screwdriver). There are 14

categories: ball, bottle, box, can, car-statuette, citrus, mug,

4-legged animal-statuette, mobile, screwdriver, tissue, toilet-

paper, tube and root-vegetable (see Fig. 5), each with 10

different object instances per category (in total 140 ob-

jects). For each object, the 2D (RGB image) and 3D (point

cloud) data were collected from 16 different views around

the object (separated by 22.5°) using the 7-joint Armar

III robotic head presented in Fig. 2. To differentiate the

object and background we used the active segmentation

method [13] that generated good results in ca. 90% of cases.

Typical examples of imperfect segmentation are shown in

Fig. 6. Additionally, in order to evaluate performance of

the categorization and grasp generation systems in the real

environment, we collected data for 10 natural scenes. Five

subjects were asked to randomly place between 10 to 15

objects from 14 different categories on a table. In the scenes,

different lightning condition and occlusions of objects are

present. Several scenes are shown in Fig. 11 and 13.

B. Experimental Setup

The database was divided into four sets used for: (1) train-

ing, (2) validation of OCS parameters, (3) validation of the

cue integration parameters, and (4) testing. Objects were

randomly selected for each set with the ratio 4:1:1:4 objects

per category. In total, data for 56 objects were used for

training and testing, and data for 14 objects for subsequent

validations. Due to the fact that we aim to test performance

of the system for the object categorization and not object

instance recognition, an object that was presented to the

system during the training phase was not used to evaluate

its the performance.

For training, we selected 8 views per object separated by

45° (Fig. 7 top row). We also used 8 images per object for

testing, however we varied a number of unknown viewpoints

between 0 and 8. Fig. 7 (bottom row) presents a test setup

where half of the views is unknown. This setup reflects

the best the real condition and we called it Setup-50. The

results are reported for a single object view and information

provided by different views was not fused. To average the

results each experiment was repeated five times for randomly

TABLE II

RESULTS FOR THE FEATURE SELECTION EXPERIMENTS FOR Setup-50.

Descriptor SIFT opponentSIFT HoG FPFH

Av.Categ.Rate 86.2% 86.8% 75.1% 65.8%
σ 4.5% 3.3% 1.8% 2.7%

chosen object instances. We report the average categorization

rate and standard deviation (σ).

C. Feature Selection for Object Categorization

We built four identical single cue OCSs, one for each

descriptor, to evaluate the performance of the descriptors

for encoding different object properties: appearance (SIFT),

color (opponentSIFT), contour shape (HoG) and 3D shape

(FPFH). The SIFT and opponentSIFT were extracted using

a grid detector, and HoG descriptor using the Canny edge

detector. The final object representation for the 2D descrip-

tors follows a concept of the spatial pyramid, and for the 3D

descriptor BoW model.

In order to assess the performance of the descriptors

under different viewpoints, we varied a number of unknown

viewpoints in the test set between 0 and 8. The results

are illustrated in Fig. 8. All 2D descriptors obtained rather

high categorization rate when the viewpoint was known (0

views), but the performance dropped significantly as the

viewpoint varies. The highest performance was obtained for

opponentSIFT which indicates that color information is less

influenced by the viewpoint changes than shape information

(HoG). The 2D descriptors yielded higher categorization

rates than the 3D descriptor. However, the performance of

the 3D descriptor is only slightly affected by the view-

point changes. Additionally, we attach the numerical results

for Setup-50 in Table II.

D. Cue Integration

In this section, we present results from combining 2D

and 3D categorization. The best performance of 92% was

Fig. 7. Setup-50. Objects from eight different viewpoints selected to train
the system (top row) and evaluate its performance (bottom row).

http://www.csc.kth.se/~madry/research/stereo_database/index.php
http://www.csc.kth.se/~madry/research/stereo_database/index.php


(a) opponentSIFT (b) HoG (c) FPFH (d) opponentSIFT+HoG+FPFH

Fig. 9. Confusion matrices obtained for: (a) color (opponentSIFT), (b) contour shape (HoG), (c) 3D shape (FPFH) descriptor, and (d) integrated
opponentSIFT+HoG+FPFH (linear combination method, sum rule). The images are best viewed in color.

Fig. 8. Performance of descriptors under varying viewpoint.

obtained for integration of the three descriptors: oppo-

nentSIFT+HoG+FPFH using the linear combination method.

When comparing to the best single cue OCS (based on

opponetSIFT), the combination of 2D and 3D features im-

proved performance of the system in average by 5%. The

confusion matrix obtained for this experiment is presented

in Figure IV-D (d). The results show that capturing diverse

object properties (appearance, contour and 3D shape) and

integration of information from different visual sensors (2D

and 3D) not only significantly improve robustness of the cat-

egorization system, but are essential to discriminate between

similar objects that afford different tasks. The integrated

system is able to correctly classify objects that are alike in

shape or appearance, but are to be used for different purpose

(see Fig. 4). For example, it correctly categorizes objects of

similar: (a) shape, such as screwdriver and root-vegetable

where only the former can be used as a tool, ball and citrus

where only the former affords playing, or mug, can and

toilet-paper where only the former affords pouring a liquid;

(b) appearance: citrus vs. root-vegetable, bottle vs. can. Such

classification is very challenging for a system based on a

single cue.

1) Detailed Results: The categorization results for dif-

ferent choices of features and cue integration methods are

presented in Fig. 10. The results confirm that descriptors need

to be complementary, i.e. capture different object properties

and originate from different sensors which motivates the use

of multiple sensors capturing various characteristics of the

objects. The best categorization rate is obtained for fusion of

all three features (opponentSIFT+HoG+FPFH). The second

best for the combination of descriptors that capture different

object attributes and originate from different channels: 2D

color and 3D shape descriptor (opponentSIFT+FPFH). Fur-

ther, for the color and shape descriptor from the same channel

(opponentSIFT+HoG) and for the two shape descriptors

(a) Features (b) Integration methods

Fig. 10. Average categorization rate for: (a) different pairs/triples of
features (for linear combination method, sum rule), (b) different linear and
nonlinear combination methods (for opponentSIFT+HoG+FPFH).

(HoG+FPFH). The same trend in performance is observed

for both the linear and nonlinear combination methods. This

is evidence of selective properties of our system.

In case of the linear algebraic methods, we tested the

weighted sum, product and max rule. For all combinations

of features, the approach based on the sum and product

rule improved the performance of the system in comparison

to the best single cue OCS (opponentSIFT), and the sum

rule was superior to the product rule. The max rule that in

case of two classifiers is equivalent to the majority voting,

yielded the lowest categorization rate further supporting the

notion of complementarity. In case of the nonlinear algebraic

methods, we evaluated the RBF, χ2 and histogram integration

functions. All the nonlinear functions provided a comparable

performance. In our study, the linear algebraic integration

methods outperformed the nonlinear methods. A small set of

data was used to train the SVM classifier for the nonlinear

methods. We can draw the conclusion that in case of a

limited amount of data, the simpler fusion methods are more

efficient.

2) Natural Scenes: We evaluated performance of the 2D-

3D integrated OCS on 10 natural scenes where each contains

10-15 objects randomly placed on a table. To categorize

objects, we chose the best classifier trained following the

procedure described in Section IV-B. It is important to note

that an object presented to the system during training was

not used to evaluate its performance. For each object in

the scene, we estimated a confidence vector over the 14

object categories. The final label was found by choosing the

category with the highest support. The categorization results

for a few scenes together with a confidence vector for each

object are presented in Fig. 11. We can observe that the



system is capable to operate in a very challenging scenario.

For 10 natural test scenes, it yielded a high categorization

rate of 91.7% in spite of occlusions (see Scene: 3, Objects:

2, 6, 13, 14) or inaccurate segmentation (S: 4, O: 1, 5).

The most difficult remained the discrimination between the

ball and citrus category (S: 3, O: 8) what matches the trend

presented in the confusion matrices in Fig. 8.

E. Object Category-based Task-constrained Grasping

In this section, we summarize the results of an integrated

system considering categorization for task-constrained ob-

ject grasping. Our experimental scenario considers multiple

objects grasp planning constrained by the assigned tasks.

In addition, we take robot embodiment into account. The

robot is presented with a scene containing several unknown

objects, see Fig. 12. First, object hypothesis are segmented

from the background. Secondly, each hypothesis is fed into

our object categorization system. In the given scene, 13

objects were found, all correctly classified. The confidence

value of each object provides evidence for the order in which

objects should be grasped.

Next, given the assigned task, the robot needs to decide:

(1) which object should be grasped, and (2) how to grasp

it to fulfill the task requirements. For this purpose, we use

the embodiment-specific task constraint model. The model is

trained on a grasp database that includes stable grasps gener-

ated on a set of synthetic object models using the hand model

from the humanoid robot Armar [34]. The object models are

extracted from the Princeton Shape Benchmark [32]. Each

category includes 4 different object shapes that are scaled

to 2 sizes. Five tasks were labeled: hand-over, pouring,

dishwashing, playing and tool-use. The total training set

includes 1227 cases with 409 cases per grasping task.

1) Grasp Transfer: Our goal is to infer the most suitable

grasp parameters for an object in the 3D scene given the

assigned task task and the categories of the objects obcl.

A grasp is parameterized by multiple variables: dir, fcon

and pos. In this paper we only illustrate the results on pos.

The reason is that pos represents from which direction the

hand is placed relative to the object, therefore is a very

intuitive variable to exhibit task constraints. For each object,

we sample a set of points on an ellipsoid the size of which is

determined by the pos data, and infer the likelihood of each

pos point conditioned on obcl and task, P (pos|obcl, task).
The resulting likelihood maps for obcl = mug and task =
pouring are presented in Fig. 12. The point that has the

highest P (indicated by the brightest color) implies the best

grasp position for the task.

The pos variable in the BN is represented in the synthetic

object local coordinate system. In order to transfer grasp

information to an arbitrary object in the scene, it is necessary

to convert the pos data from the local object frame to the

world coordinates. This transformation requires the knowl-

edge of object size, position and orientation in a scene. In

this paper, we assume that the orientation of the object is

known. The size and position are determined by estimating

a minimum bounding sphere of the filtered 3D point cloud

(outliers and background points are removed). We assume

that the diameter of the bounding sphere corresponds to the

largest object dimension. Several examples of grasp transfer

to the real objects are presented in Fig. 12. For each object

in the scene that was classified as a mug, a set of grasping

points, that create a grasping map, is presented in the front

(camera), top and back view. It is important to note that by

transferring the grasp map, we are able to generate grasp

points for the back (not visible) part of an object without

reconstructing the full object shape.

2) Task-constrained Grasping in a Real Scene: Fig. 13

shows the results of the experiment for natural scenes. We

show the likelihood maps for each object using colored

sample points of P (pos|task, obcl) for five tasks: hand-over,

tool-use, pouring, playing and dishwashing. Order in which

objects should be grasped given a task is determined as

P (obcl, task) · C, where C is object categorization confi-

dence introduced in Eq. 1.

In Fig. 13, we see that for the pouring task (Row: 3,

Column: 2), the likelihoods of the sample points around

mugs and bottles are clearly higher than for other objects

indicating that they are the only objects affording the task.

Similarly, screwdrivers are the only objects that can be used

as a tool (R:2, C:1 and R:4, C:1), and cars and balls to play

(R:2, C:2). For the hand-over task, all objects have high

likelihood. This indicates that by using the object category

information and the task constraint BN, we can successfully

select the object according to their task affordance.

For the objects that afford pouring, for example mugs in

Scene 2 (R:3, C:2, Objects 6 and 9) the likelihood maps

show darker color on the top of the object. This is because

the robot hand should not block the opening of an object

when pouring a liquid. When using the screwdriver as a tool

(R:2, C:1, Object 2), the network favors the position around

the tip of the screwdriver whereas leaving the handle part

for regrasp.

V. CONCLUSIONS AND FUTURE WORK

Robots grasping objects in unstructured environments need

the ability to select grasps for unknown objects and transfer

this knowledge to other objects based on their category

and functionality. Although for pure categorization 2D in-

formation may be sufficient, 3D information is required

for grasping and manipulation of objects, and thus can be

also used for categorization. In this work, the categorization

system is integrated with a task constrained model for

goal-directed grasp planning. We showed that the object

category information can be efficiently used to infer the task

affordance of the observed objects. The proposed system

allows for reasoning and planning of goal-directed grasps

in real-world scenes with multiple objects.

We have presented the 2D-3D object categorization system

that is built upon an active scene segmentation module.

The system allows to generate object hypotheses and seg-

ment them from the background in real time. Experimental

evaluation showed that the proposed system achieved high

categorization rate (up to 92%), significantly better than the



Fig. 11. Categorization results for natural scenes. For each object in a scene, confidence values over 14 categories are shown. All objects were correctly
classified except three objects marked using a blue square in confidence vector.

classic single cue SVM for the same task. Moreover, the cue

integration method proposed in this paper is very efficient

and capable to model situations where limited amount of

data is available. The results show that capturing diverse

object properties (appearance, color, shape) and integration

of information from different visual sensors (2D and 3D), not

only significantly improve robustness of the categorization

system, but are essential to discriminate between similar

objects that afford different tasks.

The current system focuses on vision-based, task-oriented

grasp planning. The next step in performing a manipulation

action is execution of a stable grasp. One avenue for future

research is to integrate this system with the tactile sensing

based on-line stability estimation system in [35]. The aim

will be to condition the choice of grasps based on the

multiple sensory signals available to a robot prior to and

while manipulating the object.
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Fig. 12. Grasp transfer from a synthetic object model to real objects in a scene. The grasping points with a high value of P (pos|obcl, task) (good
grasping points) are represented by bright color in the heat maps.

Fig. 13. Generated grasp hypotheses and associated probabilities for the natural scenes. The grasping probability around an object is indicated by a color
of the point (the brighter is the point, the higher is the probability). For each scene, we specify which objects should be grasped first (bar on the right side
of a scene grasp map). The images are best viewed in color. Additional experimental results for natural scenes together with the movies that present
accurate 3D information are available on our website http://www.csc.kth.se/~madry/research/madry12icra.

http://www.csc.kth.se/~madry/research/madry12icra
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