“Robot bring me something to drink from’:
object representation for transferring task specific grasps

Marianna Madry Dan Song

Abstract— In this paper, we present an approach for task-
specific object representation which facilitates transfer of grasp
knowledge from a known object to a novel one. Our rep-
resentation encompasses: (a) several visual object properties,
(b) object functionality and (c) task constrains in order to
provide a suitable goal-directed grasp. We compare various
features describing complementary object attributes to evaluate
the balance between the discrimination and generalization
properties of the representation. The experimental setup is a
scene containing multiple objects. Individual object hypotheses
are first detected, categorized and then used as the input to a
grasp reasoning system that encodes the task information. Our
approach not only allows to find objects in a real world scene
that afford a desired task, but also to generate and successfully
transfer task-based grasp within and across object categories.

I. INTRODUCTION

Perception of and interaction with an object is one of
the key requirements for a robot acting and interacting in
the environment. In this paper, we develop and evaluate
an object representation that allows for linking of object,
task and action information for the purpose of transferring
grasping knowledge between objects that afford the same
task and fulfill the same functionality. The aspect of defining
the relationship between an object and its functionality is
related to the concept of affordances [1], [2], [3]. In this
paper, we expand this notion by incorporating requirements
imposed by a given task, e.g. when pouring from an object,
the fingers should not occlude the opening of the object, as
presented in Fig. 1. In this context, an object representation
needs to have capacity to accommodate constrains on a type
of action (grasp) applied to an object.
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Fig. 1. Grasping a cup: (a) pouring and (b) hand-over task Fig. 2.
(hand should not block the opening), and a screwdriver:
(c) hand-over and (d) tool-use task (hand should grasp the

handle).
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A class of objects that afford
the same task (pouring) and is char-
acterized by high inter-class variations.
It imposes a requirement for an object
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There are clearly several general requirements for an
object representation, especially in a context of transferring
a plausible action between different objects. It is important
that an object representation remains “constant under
various transformations” [3], namely has an ability to
generalize over inter-class variation, as presented in Fig. 2.
At the same time, many objects that facilitate different
functions are hard to distinguish due to similar physical
properties. An example can be a mug and a roll of toilet
paper while similar in appearance clearly only the former
affords pouring, see Fig. 3. This directly translates to the
question: Which object attributes should be modeled to
maintain balance between discrimination and generalization
properties of the representation?

Although several object representations that relate object
and action have been proposed, they encode object attributes
in a data domain using relatively simple features [4], [5],
[6], [7] and describe object attribute based on a single
modality [2], [8], [7], [9]. Intuitively, the most effective ap-
proach is to capture various object properties using different
modalities, for example object shape based on 2D and 3D
data.

Our aim is to leverage on recent advances in the object
representation to show how this can facilitate transfer of
grasp knowledge to a novel object. We approach this problem
in two steps, see Fig. 4. First, we obtain semantic information
about an object category defined by its physical attributes
(appearance, color, shape) using RGB images (2D) and point
cloud data (3D). Evidences for the object category, obtained
separately for each of the attributes, are integrated to keep
balance between discrimination and generalization. Second,
we use a probabilistic model to infer: (a) object function,
e.g. if it afford pouring, and (b) make detailed decisions on
sensorimotor level, e.g. plan grasps that afford pouring.
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Fig. 3. Examples of physically similar objects that
afford different tasks. It imposes a requirement for
an object representation to have high discrimination
power.

representation to have high generaliza-

tion power.



In summary, we demonstrate that, by using an approach
that combines information about an object, functionality and
action, the robot can not only choose the objects in a real
3D scene that afford the assigned task, but also plan the
grasp such that it satisfies the constraints posed by the task.
Thus, grasp knowledge can be transferred between objects
that belong to the same category, though the details of the
geometry and physical properties vary.

II. RELATED WORK

The notion of object categories is useful for task-related
grasping: for humans, it is natural to use and manipulate
objects based on their functionality and current task [1]:
when using a screwdriver as a tool, the fingers should be
placed at the handle, see Fig. 1. The knowledge of how
to grasp an object can be transferred between objects that
belong to the same category. In [10] and [6], we developed a
probabilistic framework using Bayesian network to represent
the task-related grasping. The task requirements are encoded
through the conditional dependencies between a task variable
and a set of object and grasp features. This work was done in
a simulation environment and the inference engine assumed
the object class unknown. Learning of the network structure
in [6] revealed the importance of a proper choice of an object
representation for an accurate transfer of task specific grasp
to a novel object.

Many household objects belonging to the same functional
category differ significantly in physical properties (Fig. 2)
and objects affording different tasks are alike in color and
shape (Fig. 3). Thus, an object representation needs, at the
same time, to ensure discrimination between the categories
and handle high within-class variations. We predict that a
representation encoding various object properties originating
from different modalities (e.g. 2D and 3D data) will be
the most effective. In [11] authors presented an hierarchical
classification system where 3D descriptor is used to narrow
choice of objects to those of similar shape specified by 2D
descriptor. However, in this approach the grasp hypothesis is
given for an object instance, not category.

Several works have been devoted to relate an object
with a performed task at the object category level. Grasp
affordances for local regions of an object have been inferred
based on object appearance in 2D (SIFT descriptor [2], [9],
saturation channel filters [12]), or geometric shape properties
in 3D (hexahedron [7], edge segments [8]). The approach
presented in [8] was further extended to represent spatial
relationship between local edge position and orientation in a
hierarchical manner [13]. Finally, global 3D object attributes
located in the input data domain (object size, volume, con-
vexity, symmetry) have been used to learn object affordances
based on both action and function [4], [5], [6].

III. OBJECT REPRESENTATION

We combine recent advances in object representation to
enable transfer of task-constrained grasp knowledge be-
tween objects that belong to the same category defined by
their physical properties. Our Object Categorization System

(OCS) integrates descriptors of appearance (e.g. texture) ,
color and shape using both RGB images (2D) and point
cloud (3D) data. As shown in Fig. 4 (middle column), we
train a separate OCS for each descriptor and then fuse
evidences from a few OCSs to obtain the final categorization.
We discuss as follows: feature extraction, classification and
aspects of integration of the single cue OCSs.

A. Feature Extraction

There are many descriptors that encode object appearance
(SIFT [14], textones [15]), color (opponentSIFT [16]) and
contour shape (HoG [17]). Studies on 2D cue integration [18]
show that contour- and shape-based methods are adequate for
handling the generalization requirements needed for object
categorization, however they are not robust to occlusions.
On the other hand, appearance- and color-based descriptors
have been successfully applied in object instance recognition
and detection [14], [15]. However, their performance drops
significantly with clutter and illumination changes. Also,
different 3D shape descriptors have been proposed [19]. Only
a few of them are applicable to real 3D data that covers only
the visible part of the object: spin images [20], Fast Point
Feature Histograms (FPFH) [21], or Radius-based Surface
Descriptor (RSD) [22].

Motivated by the fact that the object representation should
have high discrimination and generalization power, in order
to be robust to real world condition and diverse for cue
integration, we extract from a segmented part of an image
multiple 2D descriptors encoding different object attributes:
appearance (SIFT), color (opponentSIFT), contour shape
(HoG). The final object representation for 2D descriptors
follows a concept of the spatial pyramid [23]. The 3D
shape properties of an object are obtained by applying the
FPFH [21] and RSD [22] descriptors to a point cloud. It
was shown that the normal-based descriptors obtain high
performance for an object categorization [24]. To obtain
the final object representation, the Bag-of-Words (BoW)
model [25] is employed.

B. Classification

For classification, we use SVMs with a x? kernel suc-
cessfully applied in previous studies [16][17][11] for the
histogram-based object representations. For cue integration,
we need information about the confidence with which an
object is assigned to a particular class. Several studies have
been devoted to find confidence estimates for large margin
classifiers [26]. In principle, they interpret the value of the
discriminative function as a dissimilarity measure between
the sample and the optimal hyperplane. In this work, we use
the One-against-All strategy for M-class SVMs which was
shown to be superior to other methods [27].

C. Cue integration

Various cue integration approaches have been applied to
object classification based on 2D data [26][28]. In contrast
to the low level integration that operates directly on feature
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Fig. 4.
Categorization Systems (OCSs). Then, grasping hypotheses are generated taking the task into account. The image is best viewed in color.

vectors, the high level integration, that is commonly accom-
plished by an ensemble of classifiers or experts, have been
shown to be more robust to noisy cues. Further, the classifier
outputs can be combined using linear [26] or nonlinear [28]
techniques. However, nonlinear methods requires a larger
training dataset to the estimate relatively complex relation-
ship between parameters. In a case of a limited amount of
training data this may lead to a drop in performance. We
have observed this behavior for our application. Results can
be found in [29].

In this work, taking a high level approach we combine
information from the single cue OCSs. Total support for
each class is obtained as a weighted sum, product or max
function of the evidences provided by individual classifiers
and function parameters are estimated during training. The
final classification decision is made by choosing the class
with the strongest support.

For details about the described Object Categorization
System, we direct the reader to our previous work [29].

IV. ENCODING TASK CONSTRAINTS

In our previous work [10][6][30], we developed a proba-
bilistic framework for embodiment-specific grasp represen-
tation. We model the system as a efficient Bayesian network
exploiting conditional dependencies between task, object,
action and constraints. The model is trained using a synthetic
database of objects, generated grasps, and the task labels
provided by a human. We refer the reader for the detailed
process of data generation to [10].

Both the structure and the parameters of the BN are
learned from the database. The BN structure encodes de-
pendencies among the set of task-related variables, and the
parameters encode their conditional probability distributions.
Fig. 5| shows the learned structure of the BN with the features

Fig. 5. The structure of the Bayesian network task constraint model.
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Visual Object Category-based grasp generation for an arbitrary scene: objects are first segmented and categorized using our 2D-3D Object

listed in Table m Once trained, the model can be used to infer
conditional distribution of any subset of variables based on
a partial or complete observation of others. This allows us
to select object (e.g. by P(obcl|task)) and plan grasp (e.g.
by P(pos,dir|task)) in a task-oriented manner.

V. EXPERIMENTAL EVALUATION

We first describe the dataset and experimental setup fol-
lowed by the evaluation of several descriptors, encoding
various object properties, and their integration. Finally, we
demonstrate the results of transferring a prior grasp informa-
tion to a novel object.

A. Database

Most available 2D-3D object datasets contains a lim-
ited choice of object categories suitable for our pur-
pose [11][31][32]. Therefore, we collected a new database
— the Stereo Object Category (SOC) database [29], where
a number of objects with similar physical properties, afford
different tasks, see Fig. 3. In order to capture variations in
appearance, shape and size within each class, various objects
were selected for each category.

The SOC database contains RGB-D data collected using
the 7-joint Armar III robotic head equipped with two foveal
and peripheral cameras. To differentiate an object and back-
ground, an active segmentation method was used [33]. The
database includes 14 object categories: ball, bottle, box, can,
car-statuette, citrus, mug, 4-legged animal-statuette, mobile,
screwdriver, tissue, toilet-paper, tube and root-vegetable,
each with 10 different object instances per category. For each
object, both 2D (RGB image) and 3D (point cloud) data
were collected from 16 different views around the object
(separated by 22.5°). Additionally, there is a choice of data
collected in natural scenes. A few subjects were asked to
randomly place between 10 to 15 objects from 14 different

TABLE I
FEATURES USED FOR THE TASK CONSTRAINT BAYESIAN NETWORK.
Name Dimension  States  Description
task - 5 Task Identifier
obcl - 7 Object Category
size 3 6 Object Dimensions
dir 4 15 Approach Direction (Quaternion)
pos 3 17 Grasp Position
fecon 11 3 Final Hand Configuration
pshcv 3 3 Grasp Part Shape Vector
coc 3 8 Center of Contacts
fvol 1 4 Free Volume
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Fig. 6. An experimental setup where eight views per object are selected

to train an object representation and the remaining eight views for its

evaluation. Data for all objects and natural scenes can be viewed at: http:

//www.csc.kth.se/~madry/research/stereo_databasel
TABLE II

RESULTS FOR THE FEATURE SELECTION EXPERIMENTSE

[ Descriptor [[ SIFT | oppSIFT | HoG [ RSD | FPFH |
Av.Categ.Rate 83.3% 83.9% 63.3% 58.9% | 69.7%
o 2.9% 3.4% 2.8% 1.8% 1.9%

categories on a table. As a result, objects poses, scale and
degree of occlusion vary significantly. We recorded data for
10 natural scenes, see examples in Fig. [8]

B. Experimental Setup

For each experiment, we performed cross-validation with
the data divided into four sets: (1) training, (2) validation
of OCS parameters, (3) validation of the cue integration
parameters, and (4) testing. Objects were randomly selected
for each set with the ratio 4:1:1:4 objects per category.
In total, 56 objects were used for training and testing,
and 14 objects for validations. Rotation of the objects in
training and testing differs. As depicted in Fig. 6, eight views
per object are selected to train the representation and the
remaining eight views for its evaluation. Our aim is to test
the performance of the system for categorization and not
object instance recognition, an object used in the training
phase was never again used for evaluation.

C. Object Representation

We built five identical single cue OCSs, one for each
descriptor, to evaluate the performance of the descriptors
for encoding different object properties: appearance (SIFT),
color (opponentSIFT), contour shape (HoG) and 3D shape
(RSD and FPFH).

1) Feature Selection: As presented in Table [[I} the best
performance was obtained for SIFT and opponentSIFT. This
indicates that appearance and color information is less affect-
ed by viewpoint changes than shape information. Further,
FPFH yielded a higher categorization rate than HoG as a
result of degradation of an object shape by projective trans-
formation in 2D data. FPFH showed to be more descriptive
feature than RSD.

2) Feature Integration: When combining different fea-
tures, the best performance was obtained for integration of
the three descriptors: opponentSIFT+HoG+FPFH. Confusion

'In [29] results have been obtained for a different set of experiments.

matrices presented in Fig. 7 show that by capturing di-
verse object properties (appearance, contour and 3D shape)
origination from different sensors (2D and 3D) not only
significantly improve robustness of the categorization system,
but is essential to discriminate between similar objects that
afford different tasks. Such classification is very challenging
for a system based on a single cue.

3) Natural Scenes: We evaluated performance of the 2D-
3D object representation on 10 natural scenes. For catego-
rization we chose the best classifier trained following the
procedure described in Section [V-B] The final label was
found by choosing the category with the highest confidence
value. The categorization results for a few scenes together
with a confidence vector for each object are presented in
Fig. [§] The system yielded a high categorization rate of
91.7% in spite of occlusions or inaccurate segmentation. It
is capable to operate in a very challenging scenario.

D. Object Category-based Task-constrained Grasping

In this section, we present results for transferring task
specific grasp experience to a novel object. As shown in
Fig O] the robot faces a scene containing several unknown
objects. For each segmented object hypothesis a category
label defined by object physical properties is assigned. In the
given scene, 13 objects were found, all correctly classified.
Next, the robot needs to decide: (1) which object should
be grasped given the assigned task, and (2) how to perform
the grasp to fulfill the task requirements. The probabilistic
reasoning system is trained on a grasp database that includes
stable grasps generated on a set of synthetic object models
using the hand model from the humanoid robot Armar [34].
The object models are extracted from the Princeton Shape
Benchmark [31] with 3-8 models per category, Five tasks
were labeled: hand-over, pouring, dishwashing, playing and
tool-use. The total training set includes 1227 cases with 409
cases per grasping task.

1) Grasp Transfer: We infer the most suitable grasp
parameters given the object category obcl and assigned task
task. A grasp is parameterized by multiple variables: dir,
fcon and pos, see Tabel[ll We illustrate the results on a grasp
position pos, i.e. a direction from which the hand is placed
relative to the object. For each object, we sample a set of
points on an ellipsoid which size is determined by the pos
data, and infer the likelihood of each pos point conditioned
on obcl and task, P(pos|obcl, task). The resulting likelihood
maps for obcl = mug and task = pouring are presented in
Fig. 0]

The pos variable is represented in the synthetic object local
coordinate system. In order to transfer grasp information to
an arbitrary object in the scene, it is necessary to convert
the pos data from the local object frame to the world
coordinates. This transformation requires the knowledge of
the size, position and orientation of the object. In this paper,
we assume orientation to be known. The size and position are
determined by estimating a minimum bounding sphere of the
filtered 3D point cloud. We assume that the diameter of the
bounding sphere corresponds to the largest object dimension.
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Confusion matrices obtained for: (a) color (opponentSIFT), (b) contour shape (HoG), (c) 3D shape (FPFH) descriptor, and (d) integrated

opponentSIFT+HoG+FPFH (linear combination method, sum rule). Object representation based on integrated descriptors increased simultaneously
categorization rates for several objects classes characterized by similar properties, comparing to the single cue OCSs, such as: (a) shape, as screwdriver
and root-vegetable where only the former can be used as a tool, ball and citrus where only the former affords playing; (b) appearance, bottle vs. can.
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Fig. 8. Categorization results for natural scenes. For each object in a scene, the confidence values over 14 categories are shown. All objects were correctly

classified except an object marked using a blue square in confidence vector.

Several examples of grasp transfer to the real objects are
presented in Fig. [0

2) Task-constrained Grasping in a Real Scene: Fig. [I0]
shows the results of the experiment for a natural scene.
We show the likelihood maps for each object using colored
sample points of P(pos|task, obcl). For the pouring task, the
likelihoods of the sample points around the mugs and bottle
are clearly higher than for other objects indicating that they
are the only objects affording the task. Similarly, screwdriver
is the only objects that can be used as a tool. For the hand-
over task, all objects have high likelihood. This indicates that
by using the representation that relates object category and
functionality, we can successfully select the object according
to their task accordance. For the objects that afford pouring,
for example mugs, the likelihood maps show darker color on
the top of the object. This is because the robot hand should
not block the opening of an object when pouring a liquid.
When using the screwdriver as a tool, the network favors the
position around the tip of the screwdriver whereas leaving
the handle part for regrasp.

VI. CONCLUSIONS

We presented a framework capable of transferring of
grasping knowledge between objects that share similar phys-
ical attributes and/or have the same functionality. We demon-
strated that choosing an object representation that encodes di-
verse objects properties (color, contour, 3D shape and appear-
ance) and integrates information from different visual sensors
(2D and 3D), not only significantly improve robustness of the
categorization system, but assures relevant balance between
discrimination and generalization in the representation. This
means that we can distinguish objects that both belong
to the same functional category, but significantly differ in

physical properties, and objects that afford different tasks,
but are alike in color and shape. To summarize, the proposed
framework enables reasoning and planning of goal-directed
grasps in real world scenes with multiple objects allowing to
execute the command “Robot bring me something to drink
from”.
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