
Extracting Essential Local Object Characteristics
for 3D Object Categorization

Marianna Madry Heydar Maboudi Afkham Carl Henrik Ek Stefan Carlsson Danica Kragic

Abstract— Most object classes share a considerable amount
of local appearance and often only a small number of features
are discriminative. The traditional approach to represent an
object is based on a summarization of the local characteristics
by counting the number of feature occurrences. In this paper
we propose the use of a recently developed technique for
summarizations that, rather than looking into the quantity of
features, encodes their quality to learn a description of an object.
Our approach is based on extracting and aggregating only the
essential characteristics of an object class for a task. We show
how the proposed method significantly improves on previous
work in 3D object categorization. We discuss the benefits of the
method in other scenarios such as robot grasping. We provide
extensive quantitative and qualitative experiments comparing
our approach to the state of the art to justify the described
approach.

I. INTRODUCTION

A meaningful representation should retain only informa-
tion that is relevant for a specific task. This leads to the
question: What are the characteristics of an object that are
essential for a task? What makes it possible to grasp a pan
and a knife in a similar way [7][6], what characteristics
decide if an object affords drinking [9][20] and what makes
a chair a chair [10]? These characteristics are often non-
obvious, which is why they have been traditionally extracted
by statistical supervised learning techniques.

Statistical learning is based on the assumption that it is
possible to acquire a sufficient number of samples of the
phenomenon to be modeled. However, in many scenarios
this is not feasible due to the high-dimensionality of the
data. A common approach to circumvent this is to look at
information at a smaller scale where sufficient data can be
acquired, such as a small neighborhood “patch”. This set
of patches can then be summarized into a single represen-
tation [19], as shown in Figure 1 (top row). The traditional
approach to represent a 3D object can be considered as a
series of consecutive steps gradually increasing a level of
summarization. First, a point cloud is extracted from sensory
data, then local points are joined and summarized into a patch
representation; these patches are finally summarized into an
object representation. As such these summarizations can be
seen on a continuum.
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Fig. 2. Description of objects on a continum, local to global

us to associate a “pseudo probability” to each object (or
point on object) in an efficient and intuative manner. We
will demonstrate the use of this additional information for
understanding what parts of an object is informative and to
discover how discrimination is connected to view point of
an object, information that can at a later stage be used in a
planning context.

The reminder of the paper will be organised as follows:
in the next section Section II we will describe the related
work that puts this paper into context. We will then proceed
to detail the proposed approach in Section III. In Section IV
qualitative and quantitative results will be shown and Sec-
tion V will conclude the paper.

II. RELATED WORK

Statistical learning is based on the assumption that it is
possible to acquire a sufficient number of samples of the
phenomenon one is interested in modelling. In many scenar-
ios this is not feasible due to the high-dimensionallity of the
data. Passive robotic sensory for objects such as cameras
or depth sensors are both extremely high-dimensional. A
common approach to circumvent this problem is to look
at information on a smaller scale where sufficient data can
be aquired. One example would be to view a book in a
library as a collection of words or sentences rather than a
single object. However representing an object as a collection
of simpler lower dimensional “words” also makes objects
harder to compare. To address this it is common to apply
some form of method to summarise the collection of words to
a single object. One approach is to represent the distribution
over the word space which is known as a bag-of-words [3].
This approach have been extremly popular as a method to
summarise local decriptors applied to vision [5] and robotics
[1].
Marianna: Object description in terms of local features,
can you steal this from the GSH paper? Also can we
write in general terms of summarisation, i.e. BoW is one
thing but GSH is another just on a different scale. I.e. the
local -¿ global thing we discussed.

III. METHODOLOGY

Given an object Oi associated with class l 2 {l1, . . . , lM}
we wish to find a vectorial representation yiRD with the
characteristics described above.

we extract a set of local features Xi = [xi
1, . . . ,x

i
N ]

we wish to represent this using a feature xRD. From each
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Fig. 3. The above figure shows the qualitative summarization method
from [2]. The method is a two stage approach, in the first step a set of
words (shown in red) to partition the space of features. In the second step
side, information (such as class) is used to find a hyperplane (dashed lines)
that creates a soft partitioning of each word space with respect to class.
This plane provides a measure of how representative a specific feature is to
describe the concept used to supervise the proceedure.

A. Qualitative Features

IV. EXPERIMENTS

We will present qualitative and quantitative evaluation to
show...

A. Experimental Setup

(1) Features:
Comparison with fetures summerizing object in a differnt
way, e.g. statistics (amount of? BOW), global descriptors
( state of the art, VFH, CVFH, GSH) (2) Database, 2
scenarios
(3) Setup, Categorization rate

B. Qualitative Evaluation

(1) Which object characteristics are informa-
tive/meaningful (TIGER)? We train a separate model
for each object category and we try it on (a) different
exampels for the same object, and (b) different instances
from the same category. - We show that they are important
and stable for different object instances in the same category
(what makes tiger, cow and a horse a mammal) - (?)
What are the common information between different object
categories: tiger vs cup...

(2) Why the common information should not be chosen:
it is not discriminative; do not allow to discriminate between
categories. (EXAMPLE of a CUP category) Why we look
into the rim of a cup and ignor the round surface side
surface; due to the fact that it is common for all objects.
(First time) refer to the confusion matrix: mistakes in the
row cup, for BOW and no for QUAL!

Fig. 1. We refer to the procedure of summarization as that of creating a
single representation for a set of observations [19]. (Top) Illustration of the
continuum of summarization steps that typically is a part of the pipeline of
generating a single representation of an object for object classification. In the
left a lagre number of very small patches are summarized while on the right
side few large regions are summarized resulting in a single representation
of the object. (Bottom) Illustration of the approach we take in this paper.
The left image shows all the patches (red squares) extracted from the image
with only a few being relevant for object description (yellow). Our descriptor
creates a representation by only summarizing these essential patches.

Previously we have addressed the problem of summarizing
local features to a global representation by incorporating
object structure [16]. In this paper we will focus on summa-
rization at a more local level and present an approach that
extracts only the “essential” features needed to represent a
specific object for a specific task, as explained in Figure 1
(bottom row). The intuition is that most of the local features
of an object are irrelevant for most tasks and therefore using
a summarization of all features will reduce the proportion of
the variance that is relevant in the descriptor. For instance,
take a cup and a can which share most of the same local
geometry; in terms of object categorization it is the handle
of the cup that is the essential characteristic while in terms of
one’s ability to drink from the cup, it is the opening. Neither
of these characteristics are dominant and are therefore likely
to “disappear” in a representation constructed by summa-
rizing all local features. To overcome these problems we
will adapt a newly proposed summarization method which
introduces the concept of a Qualitative Summarization [1].
The method facilitates supervision by creating a sparse
interpretable feature space which extracts and summarizes
only the essential characteristics of a class.

In this paper we will show that the applied method-
ology allows us to automatically discover essential and
easily interpretable object characteristics. They are not only
stable within each object category, but also specific to



it. In consequence, by encoding relevant object properties
for a task, we significantly improve the categorization rate
for real scenarios compared to the state of the art. Our
approach opens doors for further enhancement of global
representations based on the local features, such as the
previously proposed Global Structure Histogram (GSH) [16].
Moreover, the information about a specific position of the
essential features might in the future facilitate planning of
robot actions required to verify an object class or a grasp
hypothesis.

The remainder of the paper is organized as follows:
Section II describes the related work that puts this paper
in context. Section III explains the proposed approach.
Section IV presents qualitative and quantitative results and
Section V discusses other robotics application of the method.
We conclude the paper and detail directions of future work
in Section VI.

II. RELATED WORK

Object representation methods aim to create a single object
description from high dimensional sensory information. In
order to facilitate efficient reasoning, it is desired to reduce
the complexity of the representation and create a compact
summary that encapsulates the key object properties. More-
over, in real applications, the representation needs to be
robust to sensor noise, variations in object pose and scale
as well as data incompleteness caused by occlusions and
imperfect segmentation.

Object representation is often obtained by extracting a set
of local object features and then defining an object model
in terms of feature occurrence statistics, such as in the
Bag-of-Words (BOW) model [11]. Recently, the increased
accessibility of depth data has simulated development of
3D local descriptors. The majority of those representations
encode local shape in the neighborhood of a point, for
example the Fast Point Feature Histograms (FPFH) [21],
Signature of Histograms of Orientations (SHOT) [27], and
many more [12][26][8].

An object representation can be built incrementally where
information is repetitively summarized at each step. It has
been shown that incorporating information about object
structure beyond the local properties significantly improves
results [14][16]. Many 3D methods that incorporate object
structure have been inspired by those proposed in the field of
object modeling from 2D images. They usually first define
a set of object parts based on local features and then encode
their geometrical relationships.

One approach is to store coarse global spatial information
by counting local feature occurrence at particular positions
on an object, such as the 3D spatial pyramids [3][15].
However, since this quantitative approach relies on precise
estimation of an object boundary or its center, it is not
robust to imperfect segmentation or variations in object
orientation. Another group of methods are those that di-
rectly add information about object structure to the local
descriptor. For example, the methods from the Viewpoint
Feature Histogram (VFH)-family [22][2] extend the FPFH

by including estimation of a camera viewing direction and
creating a global reference frame. However, the relation to
the viewpoint makes them sensitive to object rotation. The
problem of robustness to different object poses and scales
has been addressed in [16]. We previously introduced the
Global Structure Histogram (GSH) descriptor that obtains
an incremental summarization by dividing an object surface
based on its local characteristics into patches of different
geometrical properties, and then encoding the distribution
of distances between pairs of the patches. By implicitly
representing a global ordering and position of the regions
in an object internal reference frame, the GSH provides
significant improvements to other state-of-the-art methods in
realistic scenarios.

However, these methods summarize all local object fea-
tures, whereas the intuition is that only a few are relevant
for a specific task. In this paper we take an approach
which we seek to extract only these essential features. This
concept has been explored in computer vision using graphical
models [13][24][29]. More generally, the approach is loosely
related to interest point detection [18]. A few 3D keypoint
detectors have been recently proposed and they are often
motivated by similar work in the 2D domain [25][28].

In terms of representing object regions, the Clustered
Viewpoint Feature Histogram (CVFH) [2] finds and de-
scribes all continuous surface patches in an object, as they are
assumed to be less affected by noise which is predominantly
associated with the object edges. Authors do not look into
importance of different object regions for a given task in
contrast to the method presented in this paper. Moreover,
our method does not make any explicit assumptions about
which information in the object is discriminative. Instead, it
automatically discovers and extracts this information from
data.

III. METHODOLOGY

Given a set of N objects O = {Oi}N1 associated with class
labels L = {li}N1 from the set li = {cm}M1 , where M is the
number of classes, we wish to find a vectorial representation
yi that is low-dimensional and robust to noise variations that
are tied to those characteristics in the observations deemed
relevant. Each object Oi is initially represented as a point
cloud oi extracted from the scene. From this point cloud a
set of Pi local features Xi = {xi

j}Pi
1 , where xi

j ∈ Rq , can
be extracted using one of the many local feature descriptors
such as [21][12]. The focus of this paper is on how to
summarize the set Xi, where each object Oi can have a
different cardinality, to a vector representation yi with the
same dimensionality.

The bag-of-words model [11] is a very popular approach
to achieve such summarization. In that model, the first step
is to obtain a discretization of the space of the local feature
X by finding a set of key points often referred to as words.
The words are usually found by clustering all local features
from all objects. The notion is to direct words according to
the underlying structure of the data. The final step in the
summarization consists of associating each feature with a



word through a similarity measure and using the distribution
of associations as the feature space X = Rq . However, if
the set Xi is dominated by features xi

j that are irrelevant or
contain very little information about the class then yi will
not be a good representation of li. For example, a cup might
be discriminated from a can by having a handle, but not by
large cylindrical surfaces that are common for both objects.
To avoid a representation that is dominated by irrelevant
information, a summarization method based on the quality
of a word rather than the quantity was proposed in [1].
This summarization is referred as the Qualitative Vocabulary
Based Descriptor (QVBD) and is computed for a 3D point
cloud data in the following three steps:

1) Estimate a local feature descriptor for each point and
cluster the data

2) Compute the local classifiers for each word and each
class

3) Describe the objects by max-pooling the responses
obtained from the local classifiers

We will now proceed to describe this summarization method
in detail and outline its specifics to 3D object representation.

A. Qualitative Features
Assume a feature set Xi representing each object Oi with

the associated label li and a set of words W = {wk}K1 ,
where K is the number of words, that partition the space X .
The qualitative feature summarization begins by associating
each feature xi

j with the most similar word wk in W. We
will assume that similarity is encoded by proximity meaning
that each feature is associated with its closest word. In the
second step the aim is to try to recover the class-dependent
structure of each word. To that end, a hyper plane f cmwk

is
found for each class cm and each word wk. The hyper-
plane f cmwk

is aimed at finding the best separation between
each feature associated with word wk that has class label
cm and all other features associated with word wk. The
intuition here is that a word for which each class has the
same structure is irrelevant, but one with large separation is
discriminative and contains important information about the
class (see Figure 2). By employing such hyper-planes, we
can generate a representation of each object zcmi ∈ RPi×K

with respect to the class cm, where each element zcmi (·, ·) is
a pseudo probability 0 ≤ zcmi (·, ·) ≤ 1 obtained from

zcmi (j, k) = δ
(
w(xi

j),wk

)
L(xi

j

T
f cmwk

). (1)

Here w(xi
j) is the closest word to xi

j , L(·) is the logistic
function which transfers the responses into a pseudo prob-
ability and δ(·, ·) is the Dirac delta function. The value of
zcmi (j, k) is equal to zero for every word wk 6= w(xi

j). Each
element of this representation measures how well a given
feature is representative of class cm. Large separations are
discriminative and contain important information about the
class (see Figure 2).

Having {zc1i , . . . , zcMi } for each object instance, a final
representation is calculated by summarizing them into one
fixed dimensional matrix yi ∈ RM×K with

yi(m, k) = max{zcmi (j, k) : j ∈ [1, . . . , Pi]}. (2)
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Fig. 2. Illustration of the qualitative summarization method from [1]. The
method is a two stage approach. In the first step we estimate a set of words
(shown in red) to partition the space of features. In the second step, side
information (such as class label) is used to find a hyper-plane (dashed lines)
that creates a soft partitioning of each word space with respect to class.
This plane provides a measure of how representative a specific feature is to
describe the concept used to supervise the procedure. The figure has been
adopted with permission from [1].

The final representation contains the responses for the most
representative features found on the object with respect to
each word and each class, and is referred as the Qualitative
Vocabulary Based Descriptor (QVBD).

The QVBD is a universal descriptor, which given an object
point cloud, can extend any local feature descriptor to include
qualitative information. In the next section, we evaluate the
QVBD based on the popular FPFH [21] local descriptor by
applying it to a 3D object database.

IV. EXPERIMENTAL EVALUATION

In this section, we present a qualitative and a quantitative
evaluation of the QVBD descriptor for 3D object catego-
rization. First, we thoroughly and systematically analyze its
descriptive and discriminative properties, and demonstrate its
ability to select essential 3D object characteristics. Second,
we compare its performance with the state-of-the-art repre-
sentations that use different types of summarization in real
scenarios.

A. Database

Evaluation is performed on the challenging Stereo Object
Category (SOC) database [17] that contains RGB-D data
(images and point clouds) collected using the 7-joint Armar
III robotic head equipped with two foveal and peripheral
cameras. Objects are separated from the background using
an active segmentation method [4]. The database contains 14
object categories: ball, bottle, box, can, car-statuette, citrus,
cup, 4-legged animal-statuette, mobile, screwdriver, tissue,
toilet paper, tube and root-vegetable, with 10 different object
instances per category.

The SOC database consists of two datasets. In the first
one, for each object, the data are collected from 16 views



(a) Illustration of the first experimental setup of the
SOC database where rotation of single objects differs;
8 views per object are used for training an object model
(top row) and other 8 views for evaluation (bottom
row).

(b) Illustration of the second experimental setup of the SOC database for testing object
representations in real conditions. Models trained on the data from the previous setup are
tested on examples from 10 natural scenes where an object pose and scale, and a degree of
occlusions vary significantly.

Fig. 3. Experimental setups and examples of objects from the Stereo Object Category database [17]. Object representations are evaluated only on 3D
portion of the database. We use images of the objects here for better visualization. Data for all objects and natural scenes can be viewed at our web site
http://www.csc.kth.se/˜madry/research/stereo_database/index.php.

uniformly spaced around the object (every 22.5◦), see Fig-
ure 3(a). In the second, the data are extracted from 10 natural
scenes where 10 to 15 object instances from 14 different
categories are randomly placed on a table. This dataset has
235 object point clouds that are characterized by significant
variations in the objects poses, scale and degree of occlusion
typical for real scenarios, see Figure 3(b).

B. Experimental Setup

In this paper, we used the same setup as in [16]. We
performed cross-validation with the data divided into a
training and test set with ratio 60:40%. Each experiment was
repeated three times for randomly chosen object instances in
order to average the results. Moreover, an object instance
used for the training phase was never again used for an
evaluation.

The state-of-the-art descriptors compared in this pa-
per model the distribution of different features using the
histogram-based representation. Following the previous suc-
cessful results of applying the SVM classifier to this type
of data [5], we employ the same strategy. We report the
categorization results for a linear kernel for our approach,
and the best of linear, RBF, χ2 and histogram intersection
kernels for the other discussed methods.

C. Qualitative Evaluation

As stated, our aim is to identify object characteristics
that are essential for categorization. It is desired that the
selected features are consistent for different object instances
within one category and remain stable over variations in
object pose and scale, and are unaffected by changes in data
quality. Moreover, they need to be specific to each category
to enable discrimination between different object classes. We
first analyze these properties qualitatively for our method on
the SOC database for both the single object dataset and the
natural scenes (Figures 3).

To this end, we first extract a local surface descriptor
for each 3D point. We used the established FPFH [21]

Fig. 4. Estimation of essential characteristics of an object for a given
category. The heat maps visualize values of pseudo-probabilities at each
object point (the brighter the point, the higher the probability). The bright
regions consist of features that are crucial for identification of an object
category. (Top) Four animal object instances in different poses interpreted
by the animal category model. Our method is able to identify consistent
feature regions for objects within one category. (Bottom) A tiger object
interpreted by four different category models. The non-animal models find
features on the tiger that correspond to their own class.

for feature extraction, since it is related with the further
discussed (semi)-global descriptors. Then, we cluster the
features using K-means with the Euclidean distance to obtain
words and assign the features to their closest word. We
computed the local linear classifiers for each word and each
object category, Thus, the final number of the local classifiers
is equal to K ×M , where K is the number of words and
M is the number of object categories (see Section III).
Next, we measured the response of each feature vector to
the corresponding M local classifiers (f cmwk

hyper-planes).
This gives a pseudo-probability value for each 3D point and
each category. Thus, we could interpret an arbitrary object
point cloud using a category-specific model. Figures 4 and 6
visualize the probabilities obtained on different point clouds
as heat maps.

http://www.csc.kth.se/~madry/research/stereo_database/index.php


The high probability regions (indicated by bright color)
consist of features that play a significant role in identification
of an object category. Our method does not use all the
features in the high probability regions, but chooses the best
candidates that support a given hypothesis. The visualizations
of these regions in terms of heat maps show the robustness
of our method in selecting similar features across different
examples. Figure 4 (top row) presents the heat maps for
a few different animal objects that have been interpreted
by the animal category model. We can observe that our
method consistently identifies important regions (for the
animal category around the neck and ears) generalizing over
object instance specific characteristics and various poses.

What links the tiger with an animal, a cup, a screwdriver
or a citrus? To find the answer, we applied the models
of different categories to the tiger instance, as presented in
Figure 4 (bottom row). In line with one’s intuition, our results
suggest that the regions close to the tiger’s neck, claws and
tail are important to perceive it as an animal, the shape of the
tail links it with a cup, its body with a screwdriver, the round
sides of the body are common with a citrus and it does not
have characteristics that are essential for a box. This shows
that the QVBD allows us to automatically discover human-
interpretable properties of a given object that are common
with objects from other categories. This is key to define a
suitable object representation for autonomous agents.

In order to achieve discrimination between different cate-
gories, a representation should capture unique characteristics
of each class. As presented in Figure 6, a cup, a can, a bottle
and a toilet paper all have large cylindrical surfaces. This
makes them difficult to distinguish for quantitative descrip-
tors (see the confusion matrix for the BOW in Figure 7).
In contrast, our qualitative descriptor extracts essential prop-
erties for each category and considers repetitive structures
irrelevant. It identified as distinctive the regions close to: (a)
the rim and the handle of a cup, (b) the flat top of a can, and
(c) the narrowing of the neck of a bottle. For any category, the
cylindrical areas were not seen as important. We will show
in Section IV-D that this property significantly improves the
results compared to the methods based on other types of
summarization.

Figure 5 presents the most important results for applying
a model to a specific category to all objects in a scene.
As can be seen, the high probability regions are consistent
with the previous results. For example, the method finds
important features close to the neck of an animal, the rim
and the handle of a cup. This confirms that it is capable
of generalizing over large variations in object appearance,
pose and scale. Since the pseudo-probabilities are calculated
using local classifiers with no information about the global
structure of the object, high probability regions can appear on
object instances from other categories. For example, for a box
additional objects that have box-like features were detected
(the mobile phone or the tissue package). In this framework
it is left to the final classifier to pick which responses are
needed to identify each object class.

Fig. 6. Estimation of unique characteristics for geometrically similar object
categories. The high probability regions (indicated by bright color) consist
of features that play a significant role in identification of object categories. In
the first row, the cup model is applied to different instances of this category
and it can be seen that distinctive features of the cups are robustly extracted
across several instances. Meanwhile, models coming from other categories
do not produce high probability regions on the cup instance (second row).
For objects that are similar to a cup (third row), their corresponding models
highlight regions that are unique for those categories and not shared across
the other categories.

Fig. 7. Confusion matrices obtained for: (left) the Bag-of-Words (BOW)
and (right) the Qualitative Vocabulary Based Descriptor (QVBD) for the
first setup of the Stereo Object Category (SOC) database [17] presented in
Section IV-C. The images are best viewed in color.

D. Quantitative Evaluation

In this section, we present a comprehensive quantitative
comparison of our method with several state-of-the-art 3D
descriptors adapting different methods of summarization,
such as Bag-of-Words (BOW) based on Fast Point Feature
Histograms (FPFH) [21], and the (semi-)global descriptors
such as the Global Fast Point Feature Histograms (GF-
PFH) [23], the Viewpoint Feature Histogram (VFH) [22],
the Clustered Viewpoint Feature Histogram (CVFH) [2] and
the Global Structure Histogram (GSH) [16]. We selected
results that demonstrate the most important properties of
these representations for use under real-world conditions. For
each experiment, we report the average categorization rate
and the standard deviation (σ). We refer to results presented
in [16].



Fig. 5. Estimation of essential characteristics of objects in three real scenes. Each of the scenes is analyzed for two different categories and the results
are aligned row-wise. All objects in the scenes are interpreted by the same category model, for example 14 objects in the first scene by the animal model
(top row, middle column). The high probability regions (indicated by bright color) indicate features that are crucial for a given category.



(a) First setup - Results for single objects from the SOC database where
training and test data differ in object rotation. Experimental setup is shown
in Figure 3(a).

(b) Second setup - Results for objects from 10 natural scenes in the SOC
database where training and test data differ significantly in an object pose
and scale. Experimental setup is shown in Figure 3(b).

Fig. 8. Comparison of several quantitative and qualitative object representations in terms of average categorization rate performed on data that differ
in quality and amount of available training examples. Abbreviations used for representations: BOW-JAC - Bag-of-Words based on the Jaccard distance
with 100 words; GFPFH - Global Fast Point Feature Histogram [23]; VFH - Viewpoint Feature Histogram [22]; CVFH - Clustered Viewpoint Feature
Histogram [2]; GSH - Global Structure Histogram [16]; BOW-JAC - Bag-of-Words based on the Euclidean distance with 1000 words; QVBD - Qualitative
Vocabulary Based Descriptor (QVBD) with 1000 words. The BOW-JAC, GFPFH, VFH and GSH have been evaluated in [16].

In order to systematically study the properties and robust-
ness of the method, we formulated two experimental setups
of increasing complexity. First, we perform experiments on
the first part of the SOC database in which we vary rotation
of single objects used for training and testing, as presented
in Figure 3(a). The quality of the data is also influenced by
imperfect segmentation and real sensory noise. Second, the
models obtained for the first setup are tested against objects
extracted from 10 natural scenes, as presented in Figure 3(b).
In this setup, the difficulty of the problem is considerably
increased by significant variations in the object pose, scale,
and data resolution as well as data incompleteness due to
object occlusions.
(1) Importance of qualitative information:While comparing
the confusion matrices for the BOW and the QVBD (Fig-
ure 7), we can observe that incorporating qualitative infor-
mation helps to discriminate between object categories that
share a substantial portion of the local appearance and only
differ in a small amount of features. As reasoned in the
previous section, the QVBD is able to correctly discriminate
between such categories whereas BOW easily confuses them.
For example, the cup category is well discriminated from the
bottle, can and toilet paper. The hardest to recognize are the
ball and citrus. Since in 3D they both contain almost solely
one type of features (describing round surfaces), the QVBD
discovers one kind of essential regions and in consequence
does not improve the results.
Figure 8 compares the categorization rates of the QVBD with
the BOW representations based on the Euclidean distance
(BOW-EUC) and the Jaccard distance (BOW-JAC), where
the latter is adapted from [16]. The QVBD clearly outper-
forms the BOW representations for both analyzed setups,
confirming the importance of high quality features.
(2) Summarization method: We compare QVBD with the
state-of-the-art 3D descriptors that are based on different

types of summarization. For the first setup (Figure 3(a)), the
VFH descriptor slightly outperforms other descriptors. Nev-
ertheless, the results show that the QVBD performs equally
well as the three quantitative descriptors - the VFH, CVFH,
GSH (σ=1.8%). However, in this setup all object poses used
at the test time were also available during training and there
is relatively small variance in the amount of different types
of features between the training and testing views. Collecting
data that represent all possible object orientations present in
real scenarios is very expensive or even unfeasible.
Therefore, more realistic results are those obtained for the
second setup (Figure 3(b)). We tested the descriptors on the
real scenes where an object pose, scale and data resolution
significantly differ. The QVBD massively outperforms all the
quantitative descriptors encoding global object structure (by
17% comparing to GSH) and the BOW (by 11%). Finally,
while comparing two closely related descriptors, namely the
VFH and the CVFH, we can see that describing only the con-
tinuous regions is highly effected by the data incompleteness.
These results demonstrate the great importance of encoding
and properly selecting the relevant object characteristics.

V. DISCUSSION

In this work we showed how to extract the essential
object characteristics for discriminating between different
object classes. However, we believe that the benefits of the
proposed method expand beyond object classification. First
and foremost, the method can learn a representation given
labels of any kind, not necessarily corresponding to human-
defined object categories. As such, one possible application
is grasping, for which our method would permit learning
relationships between the local characteristics of an object
and the grasp parameters. This would facilitate transfer of
grasps between locally similar objects.



As can be seen from the qualitative results, the response of
the feature is consistent over both object instances and view-
points. This information can be exploited in order to perform
other types of reasoning about objects. In particular, imagine
a scenario where a robot located in a kitchen is tasked
with finding an object to drink from; our representation
would allow the robot to search for characteristics resembling
objects that are known to afford drinking. Furthermore,
knowledge about essential features would allow the robot
to plan for observing the viewpoints that are most relevant
for discriminating the object of interest.

Finally, the approach generates a sparse representation
in which an object is described by only a subset of the
extracted local features. We believe this to be a very useful
property for extending the global summarization methods,
such as the GSH descriptor [16], where focusing on the
essential local characteristics should further improve the ob-
ject categorization performance. Moreover, the sparsity of the
representation should significantly reduce the computational
complexity. This is where we intend to focus our future work.

VI. CONCLUSIONS

Building representations of objects is traditionally based
on incremental summarization of local features. In this paper
we have shown that local statistics of 3D features contain
a large portion of variations that are not discriminative for
the class. As a solution, we proposed the use of a qualitative
summarization approach which generates a representation by
automatically selecting only the essential characteristics of an
object given the task. Further, the features are consistent over
various instances of the same class, and most importantly,
form interpretable structures which could be used in many
robotics applications. We demonstrated significant improve-
ments for 3D object categorization on a challenging dataset
with respect to other state-of-the-art methods.
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