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Abstract— Tactile sensing plays an important role in robot
grasping and object recognition. In this work, we propose a
new descriptor named Spatio-Temporal Hierarchical Matching
Pursuit (ST-HMP) that captures properties of a time series
of tactile sensor measurements. It is based on the concept
of unsupervised hierarchical feature learning realized using
sparse coding. The ST-HMP extracts rich spatio-temporal
structures from raw tactile data without the need to pre-
define discriminative data characteristics. We apply it to two
different applications: (1) grasp stability assessment and (2)
object instance recognition, presenting its universal properties.
An extensive evaluation on several synthetic and real datasets
collected using the Schunk Dexterous, Schunk Parallel and
iCub hands shows that our approach outperforms previously
published results by a large margin.

I. INTRODUCTION

The rapidly advancing tactile sensing technologies provide

sensory data of increasing quality and are commonly used

in robotics applications. The interplay between visual and

tactile sensing is paramount for the interaction of the robot

with the real world: while visual input serves as a natural

source of information for scene understanding, segmentation

and object detection [1]–[5], tactile information is crucial for

object grasping and manipulation.

Tactile sensing can be used to localize an object in a

robot’s hand and determine its material and shape proper-

ties [6], [7]. It can be used to estimate grasp stability [8],

[9] and allow for re-grasping if slippage occurs [10]. Fur-

thermore, tactile sensing is a valuable source of information

for object instance recognition [11]–[13], especially when a

part of the object is visually occluded. Finally, the relation

between an object type and tactile sensing has been exploited

to ensure that the object affords the assigned task and the

robot manipulates it in a suitable way (e.g. a bottle is grasped

so that pouring can be achieved [14], [15]).

Those examples demonstrate that an ideal representation

of tactile data should serve a wide variety of applications

and have the capability to adapt to the specific requirements

of applications. This may be achieved using unsupervised

feature learning techniques [16], [17] or deep learning meth-

ods [18]. Often, representations are obtained by manually

specifying geometric properties of object imprints on the
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Fig. 1. Example of a series of tactile data obtained for the three finger
Schunk Dextrous Hand (SDH) [21]. The measurements create a sequence
over time in which information in consecutive frames is strongly correlated.

sensor [12], [19]. In contrast, feature learning results in

representations generated from “raw” input signals without

the need of specifying discriminative characteristics a-priori.

An optimal representation should also encode all the

relevant dependencies existing in the data. As illustrated

in Fig. 1, tactile data readings create a sequence in which

consecutive frames are strongly correlated over time. Thus,

as demonstrated in our experiments, exploiting the tempo-

ral dimension becomes particularly important in the tactile

domain.

A. Approach and Contributions

We propose a representation for tactile data based on

an unsupervised feature learning approach, the Hierarchical

Matching Pursuit (HMP) [20]. The HMP was shown to

outperform not only traditional descriptors such as SIFT, but

also kernel-based feature learning methods and convolutional

deep belief networks [20]. The HMP was originally designed

for image classification and, as such, represents each spatial

sample (image) separately. It builds a multi-layer, rich feature

representation by using sparse coding techniques and spatial

pooling over image dimensions.

In this work, we extend that framework to spatio-temporal

feature learning. The main idea is to extract features from

consecutive frames and then pool them over the time dimen-

sion. This process is repeated at several scales of a spatio-

temporal pyramid to capture all the relevant characteristics.

We show effectiveness of our approach on two examples

of popular tactile-based robotics applications: grasp stability

assessment and object instance recognition. Our Spatio-

Temporal HMP yields excellent results and outperforms the

state of the art for several synthetic and real databases

that were collected using several different grippers, such as

the Schunk Dextrous, Schunk Parallel and iCub hands. We

demonstrate that our framework can be directly applied to

data with diverse characteristics without any change in its

design. We believe that the presented solution can be useful

for other applications employing tactile data and to represent

other spatio-temporal information, such as videos.



II. RELATED WORK

A common approach to representing tactile data is to

manually craft the representation based on prior knowledge

about the properties of the inputs. Early works aimed at

identifying simple primitive shapes in pressure patterns, such

as points or lines [7], [22]. Since, this approach was shown

to be inefficient, other methods focused on higher level

geometric properties of object imprints in the tactile matrices.

After identifying patches in the sensor readings that are

likely to be contact regions, those methods describe patch

characteristics using a set of manually defined geometric

attributes: position, area and eccentricity of a patch [12] or

higher-order moments [19], [21], [23]. Often, such statistics

are combined together and as feature vectors provided di-

rectly to a classifier [21]. However, as shown in [19], some

of these statistics might not be relevant for the task and

dimensionality reduction has been applied to retain the most

relevant properties [12], [24]. Other approaches draw from

Computer Vision techniques. In [25] authors adapted image

descriptors such as different filter sets and SIFT.

In terms of the key idea of obtaining features directly from

raw data, the most related to our approach are [11], [26], [27],

and [28]. However, none of those uses the state-of-the-art

unsupervised feature learning methods. In [28] authors apply

covariance analysis to sensor data to identify basic local

object shapes. In [26] input measurements are transformed

to binary matrices small fragments of which are directly

represented as codes. However, to compute the final his-

togram representation all combinatorial possibilities are used

and no actual feature learning takes place. In [27], although

authors learn the representation from data, the method is

limited to the application of shape-based object recognition.

The object model consists of a mosaic of geometric patches

aligned according to sensor positions. In [11] the bag-of-

words approach is used and the dictionary is learned from

low resolution sensor input using the K-means algorithm.

Intuitively, including temporal information to the repre-

sentation should be beneficial. While a hand is closing

around an object, it touches different parts of the object

and applies different force, see Fig. 4 (Bottom). However,

several approaches to analyzing grasp stability and object

recognition use only on a single reading acquired at the end

of the process ignoring temporal properties [9], [11], [28].

A less common approach is to model series of data. In [21]

in order to assess grasp stability, sequences were represented

by the Hidden Markov Models (HMM). Series of tactile data

were also used to compare a newly proposed type of tactile

sensors with previous hardware in [23]. Authors applied

dynamic programming techniques to classify data collected

for different household objects. An interesting solution has

been proposed in [29] where a Gaussian Process with a

recursive kernel has been used for object recognition. How-

ever, in all these studies pre-defined types of features have

been employed, such as higher order moments or geometric

properties of contact regions, as listed in Tab. 2. We will

compare our method with these approaches in Section IV-C.

III. SPATIO-TEMPORAL HIERARCHICAL MATCHING

PURSUIT

In this work, we propose the spatio-temporal Hierarchical

Matching Pursuit (ST-HMP) that builds on the recently

introduced the Hierarchical Matching Pursuit (HMP) [20]

algorithm. The HMP is a multilayer sparse coding network

that creates feature hierarchies from raw data, layer by layer,

with an increasing receptive field size. This approach has

been successfully used for object recognition and achieved

superior performance on standard vision recognition bench-

marks [17]. However, the original HMP is limited to spatial

signals such as images and depth maps.

In grasping tasks considered here, temporal information

is critical for good accuracy. The ST-HMP extracts rich

temporal structures from raw tactile data without pre-defining

discriminative data characteristics. It uses K-SVD to learn

codebooks in an unsupervised fashion over a large collection

of spatial (or spatio-temporal) patches sampled from tactile

data. With the learned codebooks, the ST-HMP computes

sparse code sequences using orthogonal matching pursuit

and then pools them in a spatio-temporal pyramid manner to

achieve robustness to both spatial and temporal variations.

A. Dictionary learning

We use K-SVD [30], a popular codebook learning ap-

proach to learn the codebooks from tactile data. The key

idea of K-SVD is to represent data as sparse linear com-

binations of codewords selected from a codebook and

has achieved the state-of-the-art results in various low-

level image processing tasks such as image denoising and

image compression. K-SVD learns the codebook D =
[d1, · · · , dm, · · · , dM ] ∈ RH×M and the associated sparse

codes X = [x1, · · · , xn, · · · , xN ] ∈ RM×N from a matrix

Y = [y1, · · · , yn, · · · , yN ] ∈ RH×N of observed data by

minimizing the reconstruction error

min
D,X

‖Y −DX‖2F (1)

s.t. ∀m, ‖dm‖2 = 1 and ∀n, ‖xn‖0 ≤ K

where H , M , and N are the dimensionality of the code-

words, the size of the codebook, and the number of training

samples, respectively, ‖ ·‖F denotes the Frobenius norm, the

zero-norm ‖ · ‖0 counts non-zero entries in the sparse codes

xn, and K is the sparsity level controlling the number of the

non-zero entries. When K-SVD is applied to our grasping

tasks, the data matrix Y consists of raw spatial patches

randomly sampled from tactile sequences.

K-SVD solves the optimization problem (1) in an alternat-

ing manner. During each iteration, the current codebook D is

used to encode the data Y by solving an inference problem

min
x

‖y −Dx‖2 s.t. ‖x‖0 ≤ K (2)

This problem is also known as compressed sensing in the sig-

nal processing community. Computing the optimal solution

involves searching over all the
(

M
K

)

possible combinations

and thus is NP-hard. Approximation algorithms are often

used. Here, we use orthogonal matching pursuit (OMP) [31]



(a) Spatial pyramid with the partition 1-2-3. (b) Temporal pyramid with the partition 1-2-4. (c) The smallest possible cell in the given
spatio-temporal pyramid.

Fig. 2. Schematic illustration of a partition of data in the spatial, temporal and spatio-temporal pyramid. The size of a cell in which features are pooled
at each pyramid level is marked with a color. The left image visualizes the 3-level spatial partition of a single frame into Cs cells. This setup is used to
compute the HMP features. The matrix is divided into S = 1+ 22 +32 cells giving the HMP of the size 14×M , where M is the size of the codebook.
The middle image presents a partition of the tactile sequence into Ct cells for the 3-level temporal pyramid 1 − 2 − 4 giving T = 1 + 2 + 22. In this
case, the dimensionality of the ST-HMP feature vector FP obtained for the spatio-temporal pyramid pooling is equal to 14× 7×M .

to compute the sparse code x. As a greedy-style algorithm,

OMP selects the codeword best correlated with the current

residual at each iteration, which is the reconstruction error

remaining after the codewords chosen thus far. At the first

iteration, this residual is exactly the observation y. Once

the new codeword is selected, the observation is orthogo-

nally projected onto the span of all the previously selected

codewords and the residual is recomputed. The procedure is

repeated until the desired K codewords are selected.

Then, the codewords of the codebook are updated one at a

time, resulting in a new codebook. This new codebook is then

used in the next iteration to recompute the sparse code matrix

followed by another round of codebook update. To avoid

introducing new non-zero entries in the sparse code matrix

X , the update process only considers observations that use

the m-th codeword. It can be shown that each iteration of

codebook learning followed by updating decreases the recon-

struction error given in Eq. 1. In practice, K-SVD converges

to good codebooks for a wide range of initializations.

B. Spatio-Temporal Pyramid

Given a tactile sequence, each pixel is represented by the

sparse codes computed from a small neighborhood around

it, e.g. a patch 4 × 4 pixels. Spatio-temporal pyramid max

pooling is then applied to these sparse codes to generate fea-

ture vectors. It partitions the tactile sequence P into spatio-

temporal cells Cst. The features of each spatio-temporal cell

are the max pooled sparse codes, which are the component-

wise maxima over all sparse codes within a cell:

F (Cst) =

[

max
j∈Cst

|xj1|, .., max
j∈Cst

|xjm|, .., max
j∈Cst

|xjM |

]

Here, j ranges over all entries in the cell, and xjm is

the m-th component of the sparse code vector xj of entry

j. Note that F (Cst) has the same dimensionality as the

original sparse codes but may be less sparse due to the

max pooling operation. The feature FP describing the whole

tactile sequence is the concatenation of aggregated sparse

codes in each spatio-temporal cell

FP =
[

F (CP
11
), · · · , F (CP

st), · · · , F (CP
SxT )

]

Fig. 4. (Top) Five robot hands used to collect databases described in
Section IV-A. (1) Model of the 3-finger Schunk Dexterous Hand (SDH),
(2) 3-finger SDH, (3) 3-finger SDH with Weiss tactile sensors, (4) 2-finger
Schunk Parallel Gripper, (5) 5-finger iCub hand. (Bottom) Example of grasp
execution with the SDH applied to the Can Cylinder (SD-5 database).
Figures are reproduced with permission from [8], [23], [29].

where CP
st ⊆ P is a spatio-temporal cell generated by spatio-

temporal pyramid partitions over the patches, S is the total

number of spatial cells and T is the total number of temporal

cells. Thus, dimensionality of the feature vector FP is equal

to S × T × M , where M is the size of the codebook. An

example of creating the pyramid is given in Fig. 2.

The main idea behind spatio-temporal pyramid pooling is

to achieve different levels of invariance to local deformations,

thereby increasing the discrimination of the features. We

additionally normalize the feature vectors FP by their L2

norm
√

‖FP ‖2 + ǫ, where ǫ is a small positive number to

make sure the denominator is larger than zero.

Finally, we underline that a dictionary can be learned not

only for 2D spatial patches sampled from individual frames,

but also for 3D patches (cubes) sampled from blocks of

consecutive frames creating a spatio-temporal dictionary. We

experimentally evaluate this solution in Section IV-C.4.

IV. EXPERIMENTAL EVALUATION

We analyzed the performance and properties of the Spatio-

Temporal HMP for several synthetic and real databases with

diverse characteristics. We considered two typical classifica-

tion problems for tactile data: grasp stability assessment and



(a) SDS (b) SD-5 (c) SD-10, SPr-10 (d) SPr-7 (e) iCub-10

Fig. 3. Objects used to collect six tactile databases described in Section IV-A. (a) Object and grasp type classes for the Schunk Dextrous Synthetic
database; (b) Schunk Dextrous database with 5 real objects: White Bottle, Black Cylinder, Bleach Cylinder, Spray Bottle, Can Cylinder. Two types of
grasp were applied to the objects (side and top) creating 8 object-grasp pairs; (c) Schunk Dextrous and Schunk Parallel databases with 10 objects: rubber

ball, balsam bottle, rubber duck, empty bottle, full bottle, bad orange, fresh orange, joggling ball, tape, wood block; (d) Schunk Parallel database with
7 deformable objects: grape, kiwi, lime, mushroom, orange, plum, tomato; (e) iCub database with 10 objects: 3 bottles, 2 soda cans, teddy-bear, monkey,

lotion, book. Figures are reproduced with permission from [8], [23], [29].

Database
Data

Type

Hand and Sensors
#Obj.

#Grasp

Types

Seq. Length Previous work

Type #Fingers Size Avr (RSD) f [Hz] Ref. Representation

SDS synthetic Schunk Dextrous

Model

3 12x6 3 3 156 (74%) –

[21]

[32]

F: 1st & 2nd order moment; size

& center of contact area

CL: HMMs, AdaBoost, SVM (rbf

kernel)SD-5 real Schunk Dextrous 3 13x6,

14x6

5 2 274 (66%) –

[21]

[8]

SD-10 real Schunk Dextrous 3 13x6 10 - 347 (7.4%) 100

[23]
F: 1st & 2nd order moment

CL: Dynamic Time Warping
SPr-10 real Schunk Parallel 2 8x8 10 - 512 (1.5%) 100

[23]

SPr-7 real Schunk Parallel 2 8x8 7 - 406 (0.9%) 100

[23]

iCub-10 real iCub Hand 5 1x12 10 - 12 (29%) 10

[29]

F: 1st-3rd moment; min&max press.

CL: C4.5, SVM(rbf), FS+SVM(rbf),

GP+STORK kernel

Tab. 2. Summary of properties of the six databases described in Section IV-A. Abbreviations: F - Features, CL - Classifier, GP-STORK - Gaussian Process
with Spatio-Temporal Online Recursive Kernel, SVM-FS - Support Vector Machines with features selected using a genetic algorithm, C4.5 - Decision tree.

Id. Object & Grasp HMP MV-HMP ST-HMP HMMERG HMMLR SVM+AB

Av Acc σ Av Acc σ Av Acc σ Av Acc Av Acc Av Acc

1 Black Cylinder Side 71.4% 3.4% 75.7% 15.1% 99.3% 2.6% 98.0% 99.0% -

2 White Bottle Side 67.7% 2.7% 86.0% 8.4% 99.0% 3.2% 99.0% 98.0% -

3 White Bottle Top 78.4% 4.7% 87.5% 17.7% 100% 0% 97.0% 96.0% -

4 Black Cylinder Top 69.5% 4.7% 95.0% 8.1% 100% 0% 90.0% 93.0% -

5 Bleach Cylinder Side 82.3% 7.4% 93.3% 11.6% 100% 0% 97.0% 98.0% -

6 Sprinkler Bottle Side 82.7% 4.2% 87.5% 8.1% 100% 0% 90.0% 93.0% -

7 White Bottle 87.5% 7.5% 97.5% 7.9% 100% 0% 59.5% 69.0% 73.5%

8 Can Cylinder 83.2% 2.9% 99.3% 2.6% 100% 0% 82.0% 86.5% 90.3%

Total Average Accuracy 77.8% 90.2% 99.8% 89.1% 91.6%

Tab. 3. Results for the grasp stability assessment task for the DS-5 database. Comparison of the HMP-based representations with the previously reported
results for the ergodic HMM, the left-to-right HMM and the SVM+AdaBoost [21, Table IV] [8, Table II & VII].

Discussed in Section IV-C.3 Discussed in Section IV-C.4

Database Previous work HMP MV-HMP ST-HMP nFD HMPFD MV-HMPFD ST-HMPFD

Av Acc σ Av Acc σ Av Acc σ Av Acc σ Av Acc σ Av Acc σ Av Acc σ

SD-5 – – 87.0 3.7 90.5 1.8 98.9 2.99 – – – – – – –
SD-10 92.0 9.2 78.7 8.4 94.0 7.0 94.0 7.0 10 89.2 6.3 97.0 6.7 96.0 5.1
SPr-10 89.2 9.1 79.5 10.6 84.5 18.2 88.5 12.9 10 83.0 9.2 85.3 16.6 91.1 11.5
SPr-7 91.4 6.9 90.5 6.0 94.3 7.4 95.7 6.9 10 92.6 5.0 97.1 6.0 97.1 6.0

Tab. 4. Comparison of the proposed methods with previous works for an object classification task for four real databases. For the SD-10, SPr-10 and
SPr-7 an average accuracy is computed based on confusion matrices for first and second moment [23, Tab. 3, 9, 10].

object instance recognition. Here, we begin with the descrip-

tion of the database and setup used during the experiments.

A. Databases

We evaluated our approach on six different synthetic and

real databases on which the state-of-the-art methods have

been tested [8] [23] [29]. This allows to examine our method

on data with widely varying properties. The databases were

collected for objects of diverse shape and physical character-

istics using the five robot hands as presented in Fig. 3 and 4.

We shortly describe each of the databases and summarize

the most important information in Tab. 2.

1) Schunk Dextrous Synthetic (SDS) database and Schunk

Dextrous database with 5 real objects (SD-5) [21] [8]:

These databases were originally collected for the grasp sta-

bility assessment problem. Each grasp execution provides a



Database
Previous work Our work

C4.5 SVMRBF SVM-FSRBF STORK-TC nFD HMP MV-HMP ST-HMP

Av Acc σ Av Acc σ Av Acc σ Av Acc σ Av Acc σ Av Acc σ Av Acc σ

iCub-10 98.5 1.2 83.5 6.8 99.5 0.1 99.3 0.2 1 99.4 0.5 99.9 0.5 100 0

Tab. 5. Comparison of our methods with previous work for the iCub-10 database [29, Tab. II]. Abbreviations: C4.5 - Decision tree algorithm, SVM-FS -
Support Vector Machines with features selected using a genetic algorithm, STORK-TC- Gaussian Process with Spatio-Temporal Online Recursive Kernel.

Alignment HMP MV-HMP ST-HMP
Av Acc σ Av Acc σ Av Acc σ

Individual 59.7% 3.4% 60.3% 4.0% 71.1% 6.8%
Concatenated 60.9% 3.7% 62.8% 2.9% 74.4% 6.8%

Tab. 1. Comparison of different alignments of tactile matrices. Average
accuracy over all objects in the SDS database for grasp stability assessment:
(a) three 6x12 pixel matrices (each from a single tactile sensor) are treated
individually, and (b) readings from all sensors are concatenated into one
18x12 pixel matrix.

Fig. 5. Results for the grasp stability assessment for the SDS database.

sequence of tactile sensor readings that is labeled as deriving

from a stable/unstable grasp. The sequence consists of tactile

measurements from the first physical contact of a hand with

an object until the fully closed hand configuration is reached

or no changes in tactile readings occur for a specified time.

The SDS database was collected for a model of the three

finger Schunk Dextrous Hand (SDH) in the RobWorkSim

simulator [32]. Each robot finger is equipped with one tactile

sensor. The database contains grasps for three objects that

are lifted using a side, top or spherical grasp creating five

object and grasp type classes (Fig 3(a)). The simulator has

a physical model of an object and the robot hand. Synthetic

tactile readings are obtained by computing deformation of

a sensor surface under force applied to it by the hand. To

judge grasp quality, a measure based on the radius of the

largest enclosing ball in the grasp wrench space is used.

The SD-5 database was collected for the three finger

Schunk Dextrous Hand (SDH) in which each finger is

equipped with two tactile sensors. An example of grasp

execution for this hand is presented in Figure 4. Figure 3(b)

presents five objects from the database to which a top or a

side grasp was applied creating eight object–grasp classes

listed in Tab. 3. We used the collection of all publicly

available data, namely the class 1-6 from [21] and 7-8

from [8]. To judge grasp stability, the object was lifted and

rotated. The grasp was considered successful if the object

did not fall or move in the hand. The annotation was done

manually. In order to ensure variety of grasps, the initial

position of objects was not precisely aligned with respect to

the hand. In addition to grasp stability information, the data

are annotated with the name of the object to which the grasp

was applied. This allows us to also use this database for an

object instance recognition task.
2) Schunk Dextrous and Schunk Parallel databases with

10 objects (SD-10, SPr-10), and Schunk Parallel database

with 7 objects (SPr-7) [23]: These databases were originally

collected to compare properties of newly proposed flexible

piezoresistive rubber tactile sensors with the popular Weiss

sensors [23]. The first two databases were collected for the

same set of 10 household objects of complex shape presented

in Fig. 3(c). In the case of the SD-10, objects were lifted

using a similar hand type as the one used to obtain the SD-

5, namely the three finger Schunk Dextrous gripper with

two tactile sensors per finger (Fig. 4(c)). The SPr-10 data

were recorded using the two fingered Schunk Parallel hand

with one flexible tactile sensor per finger (Fig. 4(d)). The

same robot hand was used to collect the SPr-7 database that

contains 7 deformable objects presented in Fig. 3(d). For

all three databases grasp execution was similar. An object

was manually placed between the gripper jaws. A palpitation

procedure started with the first physical contact of the hand

with the object. Then, five small squeeze-release steps were

executed (fingers were moved back and forward by 1 mm),

and finally the gripper released the object.
3) iCub database with 10 objects (iCub-10) [29]: The

database was collected using the five finger iCub hand in

which each finger is wrapped with 12 capacitive pressure

sensors (Fig. 4(e)). It contains nine everyday objects pre-

sented in Fig. 3(e) and one baseline where the grasp was

executed with no object. The grasping action was performed

by placing an object between the fingers and closing the

hand with low velocity. Once, contact was detected, the hand

was moved with higher velocity to firmly press the object.

The action ends when motion was blocked or its trajectory

finished.

For more information about the databases, we refer the

reader to the corresponding publications listed in Tab. 2.

B. Experimental Setup

Our goal was to encode both spatial and temporal infor-

mation in the data. To do this, we first applied the original

spatial HMP to each frame in a grasping sequence, and

then in the second step, added temporal information to the

representation. In a simple case, the latter can be done by

collecting classification results (labels) of individual frames

and applying Majority Voting to recognize the whole se-

quence. This way the temporal information is used, however

the relation between consecutive frames is weekly captured.

We refer to this approach as the Majority Voting HMP (MV-

HMP). In contrast, the ST-HMP combines spatial features

from portions of frames over time in hierarchical manner

creating a single feature vector for the whole sequence.



Support Vector Machines (SVMs) with a linear kernel

were used as a classier in all cases. For rich features provided

by sparse coding, this kernel obtains satisfactory results and

there is no need to apply more complex distance measures.

For each experiment, we report the average recognition rate

and standard deviation (σ). For the HMP we report the

accuracy for a single frame classified by the SVM and for

methods that capture temporal information (MV-HMP and

the ST-HMP) for the whole sequence.

1) Grasp Stability Assessment: As in the previous

works [21] [8], our experiments were performed for the

scenario in which the system has knowledge about an object

shape and grasp type (e.g. from visual input). Thus, we train

a separate classifier for each object-grasp pair (e.g. Cylinder-

Side) and report results for each of such pairs separately.

We evaluated our approach on both synthetic (SDS) and

real data (SD-5) closely following the setups from [21] and

[8]. For the SDS we used a smaller dataset than in [21], since

the complete dataset is not publicly available. The detailed

information about setups used for grasp stability assessment

is presented in Tab. 6 (rows 1-2).

2) Object Instance Recognition: In these experiments, we

aimed to distinguish one object from all the others, thus

a single classier was trained for all objects. We evaluated

our method on five databases (SD-5, SD-10, SPr-10, SPr-

7 and iCub-10) that contain objects of various shape, size,

weight and stiffness, grasped using four different types of

robot hands. In order to form the dataset for the SD-5, we

used all the sequences corresponding to stable grasps from

this database. We merged side and top grasps for each object.

For example, the class Black Cylinder contains all stable

grasps from Black Cylinder Side and Black Cylinder Top.

This way we increased variability of the data in each class.

The detailed information about experimental setups for all

databases used for object instance recognition is presented

in Tab. 6 (rows 3-7).

C. Experimental Results

In our experiments, we first determined the structure of

the learned features for the grasp stability assessment using

synthetic data. Given the structure, we performed a full set of

experiments on the same data and compared the performance

of the ST-HMP with the original HMP and MV-HMP. Next,

we utilized several real databases to quantitatively compare

the ST-HMP with the state-of-the-art methods that use dif-

ferent types of pre-defined features and encode temporal

information in various ways. Then, to demonstrate universal

properties of our method, we applied it without any essential

changes to data of various characteristics and to two different

tasks, grasp stability assessment and object classification.

Finally, we improved performance of our method further

using a different method of dictionary learning.

1) Structure of the Learned Features: Usually, several

tactile sensors are mounted on a robot hand providing

multiple readings in parallel. One approach can be to apply

the HMP to each reading separately and then fuse feature

vectors before classification. The other is to concatenate the

readings at the data level, forming one large matrix for HMP.

In the first experiment, we compared the two approaches

for the HMP, MV-HMP and ST-HMP on the SDS synthetic

database. All remaining parameters of the methods were pre-

selected on a small validation set. Our experiments showed

that concatenating readings is by far superior to analyzing

them separately (Tab. 1). This result can easily be explained

by the fact that concatenating the readings allows learned

features to reflect the dependencies between multiple sensors.

Next, we compared the behavior of the method for various

numbers of spatial layers of the HMP algorithm. In our ex-

periments, a one-layer spatial approach provided satisfactory

results for all versions of the HMP descriptors and there was

a minor gain in performance when a second layer was added.

We reason that due to small resolution and dimensionality

of inputs, statistics that well represent the data are already

captured at the first layer. All further experiments were

performed for the concatenated readings and the one-layer

spatial HMP. To obtain data for dictionary learning, we grid

sampled the input matrix with spatial patches of 4x4 pixels.

Then, we analyzed the influence of the number of pyramid

levels in the temporal dimension. Results are shown in

Fig. 8(b). Using multiple levels allows the algorithm to

capture information at different time scales and adapt to

processes of different temporal resolution. Our baseline is set

by pooling features over the whole sequence (indicated as 1).

In such a case the ST-HMP already significantly outperforms

the MV-HMP with accuracy 67.2% and 60.6% respectively.

When more levels are used and the sequence is divided into

sub-parts, the recognition rate increases until a point when

the level of detail is too high (e.g. 1-2-4-8-16-32) and then

the recognition rate starts to drop.

Finally, for the determined structure, we performed a

detailed comparison of the three methods of representing

tactile data in which: (a) only spatial information carried by

data is encoded (HMP), (b) temporal information is added by

aggregating classification results for individual frames using

majority voting (MV-HMP), (c) a single spatio-temporal

descriptor is created for a whole sequence (ST-HMP). Fig-

ure 5 summarizes recognition rates obtained for the synthetic

database. Results are consistent across all object-grasp pairs

confirming that including temporal information by spatio-

temporal pooling is beneficial. The ST-HMP outperforms

other methods by a very large margin. The MV-HMP does

not increase accuracy for all objects.

Figure 8(a) presents detailed results for these three meth-

ods for different size of the spatial dictionary. We see that

the ST-HMP constantly outperforms other methods regard-

less of that parameter value. A relatively small dictionary

already provides an acceptable recognition rate due to low

dimensionality of the data (16 for 4x4 patches).

2) Quantitative Evaluation: Using real data, we per-

formed a quantitative comparison of our approach with the

state-of-the-art results obtained using different techniques

for encoding temporal information, such as Hidden Markov

Models (HMMs) [21] [8], Gaussian Processes (GP) with

recursive kernels [29], Dynamic Time Warping (DTW) [23],



decision trees [29], and techniques based on SVMs and

AdaBoost [8] [29]. As shown in Tab. 2, in all these cases

pre-defined features have been used, such as higher order

moments or geometric properties of contact regions.

The ST-HMP provided superior or equal performance

as the previously published methods for all the analyzed

cases of classification tasks and types of data (multiple

objects and robot hands). As presented in Tab. 3, the ST-

HMP outperformed the HMMs on average by 8.2% for the

SD-5 and grasp stability assessment. Similarly, for object

recognition our method yielded better accuracy than the

DTW for the SD-10 and SPr-7, 4.3% and 2.0% respectively

(see Tab. 4) and was almost equally accurate as the DTW

for the SPr-10 (misclassified sequences contain up to 25% of

empty frames). Our method obtained perfect recognition for

the iCub-10 reaching accuracy of the GP (STORK-TC) and

the SVM with feature selection based on a genetic algorithm,

and improved upon a decision tree technique, while solely

using the SVM with a simple linear kernel (see Tab 5).

These results validate our approach to analyzing series of

data. Moreover, our method built on top of unsupervised

learned features outperformed all the methods using the

manually designed features. It is important to notice that

the ST-HMP outperforms also the original HMP descriptor

proving that capturing temporal information can greatly

increase the accuracy in real world environments.

3) Versatility of the Method: The ST-HMP consistently

obtained excellent performance when evaluated on the six

different synthetic and real databases of diverse properties

(SDS, SD-5, SD-10, SPr-10, SPr-7 and iCub-10). These

databases were collected for multiple robot hands (see Fig. 4)

and a number of objects that manifest a wide range of

physical characteristics (shape, size, weight and stiffness, see

Fig. 3). Moreover, our method achieved high precision for

two different applications without a change in the design.

Figure 6 presents the confusion matrices for the object

recognition task. The HMP misclassified object instances of

similar shape, such as Black Cylinder and Can Cylinder

(SD-5), material Rubber Duck and Rubber Ball (SD-10)

or stiffness Grape and Mushroom (Pr-7). Adding temporal

information about the process of hand alignment around an

object allows for almost perfect discrimination between these

physically similar objects.

4) Spatio-temporal Dictionary: A dictionary can be es-

timated not only for 2D patches extracted from individual

frames, but also for 3D patches (cubes) sampled from blocks

of consecutive frames creating a spatio-temporal dictionary

(ST-dic). We tested that approach with cubes of a size of

4×4×nFD where 4×4×1 indicates a spatial 2D dictionary

used in the previous sections.

Figure 7 shows the relative change in recognition rate for

the HMP and ST-HMP between the case of using a spatial 2D

dictionary (nFD = 1) and a ST-dic with increasing amount

of available temporal information (nFD = {5, 10, 15, 20}).

For real data and an object recognition task, adding tem-

poral dimension gradually improved accuracy for the HMP.

However, experiments with the grasp stability and synthetic

Database Task #Cl #Clf
# Sequence Data Split

#It
Class Total Train÷Test

SDS GS 2 5 150 300 80÷20% 10
SD-5 GS 2 8 25-50 50-100 90÷10% 10
SD-5 OC 5 1 25-50 360 90÷10% 10
SD-10 OC 10 1 10 100 90÷10% 10
SPr-10 OC 10 1 6-13 97 90÷10% 10
SPr-7 OC 7 1 10 70 90÷10% 10
iCub-10 OC 10 1 20 200 80÷20% 30

Tab. 6. Setups for grasp stability assessment (GS) and object classification
(OC) experiments presented in Section IV-C. Abbreviations: #Cl - number
of classes per experiment, #Clf - number of classifiers (e.g. one for each
object-grasp pair), #It - number of times an experiment was repeated.

(a) SD-5 (b) SD-10 (c) SPr-7

Fig. 6. Confusion matrices for three databases SD-5, SD-10 and SPr-7 for
object recognition. Abbreviations for object classes are given in Fig. 3.

data showed that in rare cases some values of nFD may

slightly lower performance of the HMP (< 1%). In contrast,

for all analyzed cases the recognition rate for the ST-HMP

was improved and increases monotonically with nFD until

a point when information captured by the ST-dic and spatio-

temporal pyramid become redundant. A summary of these

results is given in Tab. 4.

V. CONCLUSIONS AND FUTURE WORK

We presented the Spatio-Temporal HMP (ST-HMP), an

unsupervised feature learning approach for extracting dis-

criminative structures from sequences of tactile sensor data.

Our experiments demonstrated that the ST-HMP outperforms

by a large margin approaches ignoring the temporal com-

ponent as well as previous works using hidden Markov

models, Gaussian processes and dynamic programming to

(a) Recognition rate for different
sizes of the spatial dictionary for
the Cylinder Side class. Dots mark
the best results that are summarized
in Fig. 5.

(b) Recognition rate for different
structures of the temporal pyramid.
Numbers represent the number of
parts into which a sequence is divided
at consecutive pyramid levels.

Fig. 8. Analysis of different parameters of the proposed methods.



(a) SD-10 (b) SPr-7 (c) SDS

Fig. 7. Relative change in the recognition rate and the 95% confidence value for the HMP (top) and ST-HMP (bottom) between the case of using a
spatial dictionary (nFD = 1) and a spatio-temporal dictionary (nFD = 5, 10, 15, 20 frames).

integrate data over time. Our approach leads to state-of-the-

art performance for grasping stability assessment and object

instance recognition. An extensive evaluation on several

synthetic and real databases showed that the ST-HMP is a

universal method that can be successfully applied to tactile

data originating from different robot hands and objects.

The ability of the ST-HMP to learn rich feature rep-

resentations from raw temporal data streams makes it a

very promising approach for further research in sensor-based

object grasping and manipulation. For instance, in addition

to tactile data, there exist other useful modalities such as

finger positions and joint angles for robot grasping. The ST-

HMP has the potential to handle such modalities in a unified

framework. In the future, we plan to investigate a principled

way to combine multiple modalities and make the ST-HMP

applicable to such multi-modal data.
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