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Series of Tactile Data

* create a sequence of matrices over time
« reflects object and grasp properties
« is useful for a number of applications

Time

Flexible Representation
How to design a general and flexiable
representation that is useful for
various applications and data types?

Contribution
A new descriptor ST-HMP for
unsupervised feature learning for time
series of tactile measurements

ST-HMP vs. Previous Work
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* Pre-defined: can be irrelevant, inflexible
* ST-HMP: learns from raw input, no need
to specify characteristics a priori

Spatio-Temporal Hierarchical Matching Pu

rsuit (ST-HMP)

STEP 1: SIGNAL REPRESENTATION

* Sampling patches using a sliding
window

OBSERVED
SIGNAL
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* ST-HMP represents a signal as sparse
linear combination of codewords
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STEP 2: CODEBOOK LEARNING
* Problem: given Y, D=? and X=?
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SPARSE CODES X

* Underdetermined system of equations
is solved by minimizing the error using

VO in [V~ DX}

* Result: one sparse code for each
patch

STEP 3: CODE AGGREGATION

* Sparse codes are max-pooled in
space & time in cells of an increasing
size
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SPATIO-TEMPORAL
PYRAMID

* Feature vector = concatenated

* Applications: @ grasp stability assessment
object recognition

« Six databases: Schunk Dexterous, Schunk

[1][3][4][5][6]

Parallel and iCub hands

OBSERVED | = | OVERCOMPLETE SPARSE .
SIGNAL DICTIONARY CODES aggregation results for each cell
Experimental Evaluation
Databases ST-Dictionary

* Dictionary learned for 3D spatio-temporal
cubes sampled from N consecutive frames

~ST-HMP

* Improves until information captured by
the ST-dic and ST-pyramid is redundant

Pyramid Partition

A A

 Using multiple levels significantly
improves recognition rate

* Allows to adapt to processes of different
temporal resolution
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Encoding ST Information

* HMP: computed for every frame (only spatial)
* MV-HMP: majority voting over HMP results
(temporal information weakly captured)

* ST-HMP: one feature vector for a time series

ST-HMP vs. Previous Work

* Comparison with HMMs, Dynamic Prog.
Gaussian Processes, Decision Trees, SVMs
@csa OBJECT RECOGNITION
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Conclusions

Extensive evaluation showed that ST-HMP:
« outperforms by a large margin

- methods ignoring temporal component

- state of the art: HMMs, DP, GP, DT, SVMs
« is a universal descriptor that can be
successfully applied to:

- different applications

- data collected using different robot

hands and objects
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