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ABSTRACT

We propose a multi-modal Automatic Gender Recognition

(AGR) system based on audio-visual cues and present itsugbr
evaluation in realistic scenarios. First, we analyze rtiess of
different audio and visual features under varying condgi@and
create two uni-modal AGR systems. Then, we build an integrat
audio-visual system by fusing information from each mdgiadit
the classifier level.
pus comprising datasets of varying complexity show thaj:tife
audio-based system is more robust than the vision-basadnsys
(b) integration of audio-visual cues yields a resilienttegs and
improves performance in noisy conditions.

Index Terms— automatic gender recognition, audio-visual
cue integration, feature selection, robustness under retic sce-
narios

1. INTRODUCTION

The ability to perform automatic recognition of human gerideru-
cial for a number of systems that process or exploit humameso
information. Typical examples are information retrievAyman-
computer or human-robot interaction. The outcome ofatomatic

Our extensive studies on the BANCA cor- |
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Fig. 1. Overview of the architecture of the AV-AGR system. The
two modalities are processed separately, and then inesbedtthe
classifier level.

trained, and then the cue integration is performed by futiegevi-
dences from the two systems. Through extensive studies vade
ing conditions (controlled, degraded, adverse) on the BANGI-
pus, we show that: (a) the audio-based system is more rdiarsthe
vision-based system, and (b) integration of audio-visuakcyields
aresilient system that preserves the performance of thermtality
in clean conditions and, helps in improving the overall perfance

Gender RecognitioAGR) system can be used for generating meta-n NOiSy conditions. To the best knowledge of the authois, ighthe

data information useful for annotating audio and video fildsre-
over, gender is an important cue that can be exploited foromipg
intelligibility of man-machine interaction, or simply, faeducing
the search space in speaker recognition or surveillan¢ersgs

The problem of AGR was addressed in the past by several a

thors (see Section 2). In all these works, only one modadity (
dio or vision) was employed. The investigations were penfet
mainly under clean conditions and the robustness of AGReryst
in real-world scenarios was seldom considered. In most&y@ip-
plications, both audio and vision are available. IdeallyA&R sys-
tem should be able to exploit both modalities to improve sthess.
Since each modality has different characteristics, autioal cues
can provide a more comprehensive description of a subjact ¢h
single modality. Finally, integration of the cues may yieldhGR
system that is resilient to the degradation of both, or evdrrpo-
ral unavailability of one of the input signals.

In this paper, we investigate an audio-visual AGR (AV-AGR)
system trained under clean conditions and, then tested wadg
ing conditions. We also analyze different feature reprisgams for
each of the cue, and assess their robustness to varyingtiomsdi
The AV-AGR studied in this work is based on the high-leveeara-
tion framework. In other words, first uni-modal AGR systems a
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first study on audio-visual integration for AGR.

2. RELATED WORK

The previously proposed solutions to the AGR problem wesethia

%n single modality, either on audio or vision. The first works

audio-based AGR aimed at identifying the most appropriegtuires
of speech signal for the task. Comparison of voice sourdéshp
frequency) and vocal tract-related features (first founfants with
their respective frequency, amplitude and bandwidth)dantowels
extracted from the clean-condition speech data of 52 speakas
presented in [1]. Further analysis of different parametjoresen-
tations of speech signal (linear prediction, autocorietatreflec-
tion and cepstrum) was performed on the same database fets;ow
voiced and unvoiced fricatives [2]. The evaluation of mepstral
features for different groups of phonemes like vowels, hdisaids
etc. was conducted in [3]. Moreover, the last two studiedyaed
an influence of different filter orders (from 8 to 20) and tymds
coefficients (statiws.delta) on the performance of an AGR system.
More recently, the comparision of Support Vector Machirg@gNis)
with nearest neighbor classifiers for the first 12 cepstrafftments
on high quality recordings of 150 speakers from the ISOLEpas
was presented with 100% AGR rate for SVMs [4].

Early research in vision-based gender recognition wasskeml
upon the use of artificial neural networks for feature extomcand
classification on clean condition data [5, 6]. Latest resedéwoked



into more complex lighting and pose variations, and foréagets of ~ Coefficients (MFCCs) and Perceptual Linear Prediction (Ridef-
subjects, such as in the FERET database [7]. The experirstath  ficients [11]. In order to compare different types of feagggrelim-
ies suggested that for the AGR task based on visual cuesMis S  inary experimenfswere performed for: (a) first four formants with
with the RBF kernel are superior to the linear, quadratitiefidin-  their respective frequency and bandwidth, and (b) LPCCsC s
ear discriminant, k-nearest neighbor classifiers as wetbasore  and PLPs. The parametric features were constantly beterttte
complex techniques such as large ensemble RBF networkd.[7, 4£ormant related features (which is consistent with the iotev re-
In [4], comparison of row data reprasentation with featwietmined  sults [2]), especially under noisy conditions. It may be thighe fact
through principal component analysis (PCA), referred teigen-  that format estimation is not robust. Moreover, all threeapeetric
faces [8], was made on database consisting of 1640 frontal, u representations provided the same performance under ctewti-

occluded face images. tions, however PLPs were slightly better than MFCCs and L®CC
under noisy conditions. As a result, in the rest of the paperre-
3. THE AUTOMATIC GENDER RECOGNITION SYSTEM port our studies with the FO and PLP features.

This section presents an architecture of our audio-vis@RAA- 33 Visual Features

AGR) system. The standard automatic face recognition systems use ailoerd
sional representation of faces obtained by means of conmpanel-
ysis techniques. The suitability of the eigenface methadtlie
In designing the AV-AGR a two-fold approach was adaptedstFir V-AGR problem and clean-condition data was experimentzdiy-
we studied the two cues separately by building audio-based a firmed in [4]. However, in case of face recognition systerhss t
vision-based AGR systems (A-AGR and V-AGR). Second, thesdechnique works efficiently only when constant face poseligd-
systems were integrated to provide the final decision basdtbth ~ ning are preserved and tends to fail under varying conditiofo
modalities. Overview of the system architecture is premrih  overcome this problem a technique that additionally usesali dis-
Figure 1. In the proposed solution, the A-AGR system utidlize criminant analysis (LDA), referred to as the fisherface rodftwas
speech signal. Similarly, the V-AGR system exploits exokly introduced [12]. Both types of features, eigenfaces anaiffabes
face images and no stature information is used. The A-AGR anavere evaluated in this work.

V-AGR systems have similar architectures which consisthoée .

parts performing the following functions: (a) data premssing, 3.4. Audio-Visual AGR System
(b) feature extraction, and (c) classification. The rolehef signal  The AV-AGR system is created by fusing evidences from the two
preprocessing block is extraction of useful fragments efdtynal.  modalities at the high level, after the single-cue clasaiiin is per-
The previous studies on audio suggested that voiced phanaree formed. The architecture of the AV-AGR system is presemefid-
more discriminative for gender than unvoiced phonemes][2A8  ure 1. The a posteriori probabilities provided by the sirmgle clas-
use a voiced/unvoiced detection to obtain the most infduagarts  sifiers are combined using the sum or product rule to provige t
of the signal. In case of the V-AGR system, data preprocgssinfinal decision based on both modalities. Theoretical studhow
includes face detection, localization, and finally segagon. The  that these two rules are most suitable for the two-class@mofl3].
function of the second block is extraction of features fréve pre-  Additionally, we considered equal or unequal weighting afdali-
processed signal that allow for most accurate classificatfothe  ties during the experiments. The latter were performed ieoto
subject. The description of this block for the A-AGR and V-IRG  answer the question of different importance of the modsiih the
system is given in Sections 3.2 and 3.3, respectively. Kinabs-  correct classification.

sification of an instance to one of the two possible classardfe

or male) is performed. The classification module employsstirae 4. EXPERIMENTAL SETUP

algorithm in case of both A-AGR and V-AGR. The SVMs with the 4.1. Database

radial basis function (RBF) as a kernel, successfully &gpin the
previous studies [7, 4], were used as a classifier. In ordestimate
the a posteriori probability of a particular class for eaahdality the
Platt's method was used [9].

3.1. System Overview

The AGR system was evaluated on the BANCA database (En-
glish corpus) comprising three datasets of varying conityl¢£4].

Data acquisition was performed using 2 cameras and 2 micro-
phones (poor-quality and good-quality) under three diffiertypes
3.2. Audio Features of conditions: (a)ontrolled good-quality microphone and camera,
uniform background and stable lighting; (@&graded poor-quality
microphone and camera, non-uniform background; gdyerse
good-quality microphone and camera, background noisetramo
conditions [15]. In every conditions, 4 sessions were saleetidur-

ing which 2 recordings from 52 subjects (26 females, 26 malese
collected. In our experiments, we used 1.3s of voiced spsiectal

and 5 images from each video file. The data were divided imeeth
sets used for training, development and testing. In ordevatuate

the system on the same number of known and unknown subjects,
only a half of the subjects (26) were used for training. Thadlh,
subjects (52) were divided into two groups consisting of 46 a6
subjects which were used for development and testing. ih®i-

tant to highlight the fact that data from different sessiaese used

Itis a commonly known phenomenon that females are chaiaeter
by a higher pitch frequency (FO) value than males. The diseri
native role of FO was experimentally confirmed in [1]. Thus w
first evaluate the effectiveness of FO for the AGR problemeund
varying conditions. Furthermore, it was observed that fenaad
male voices differ in the entire range of their spectral abtaris-
tics due to dissimilarities in the anatomical structure feé vocal
tracts [10]. In consequence, different values of the fortnecharac-
teristics (frequency, bandwidth, amplitude) are typical females
and males, and thus can be used to distinguish the gendethékno
type of features that capturimter alia, information encoded in the
shape of the spectrum of speech signal is the parametriesepr
tion. We focused on the standard features used in the dtale-0
art Automatic Speech and Speaker Recognition systemd. ifilezr 1preliminary experiments were performed on the developrsehipre-
Prediction Cepstral Coefficients (LPCCs), Mel-frequen@ps§iral  serving the experimental setup presented in Section 4.




| [ Item | Train | Dev | Test |
Common || #Subj.X(F,M) | 26(13,13) | 16(8,8) | 36(18,18)
Setup #Video Files 104 64 144
#Images 520 320 720
Audio Amount 136s 84s 188s
[ Protocol || ltem | Train | Dev | Test |
Controlled Conditions Con Con Con
Session s01,s02 | s03,s04| s03,s04
Degraded Conditions Con Deg Deg
Session s01,s02 | s07,s08| s07,s08
Adverse Conditions Con Adv Adv
Session s01,s02 | s11,s12| s11,s12
Table 1. Experimental setup for different protocols. Abbreviaso

and symbols: 'Con’=Controlled, 'Deg'=Degraded, 'Adv'=Aerse,
'Subj.’=Subjects, 3¥'=Total, 'F'=Females, ’'M'=Males and
'sxx’=session number referring to the BANCA database [17].

for training, development and testing. The following thpeetocols
were defined:Controlled Degradedand Adverse Both the com-
mon and specific parameters of these protocols are preserttes
upper and lower part of Table 1. The system was always trained
controlled-condition data and tested under controlledratded and
adverse conditions.

4.2. Analysis of Audio Data

The audio signal extracted form the video files, sampled Afl§
was analyzed in frames of 25ms using a frame shift intervaOats.
The ESPS pitch tracking method was used to estimate the FO v
ues [16]. This method, not only gives estimates of FO, bub als
provides binary information about frame voicing which wased
to extract the 1.3s of voiced data from each file. We analyzzd p
formance of the PLP features with respect to the number (9193
and type (static vs. statiadelta) of cepstral coefficients included to
the feature vector.

4.3. Analysis of Visual Data

In order to extract a face region from an image, first an autiema
frontal face detector performing geometric normalizatithe

5. RESULTS AND DISCUSSION

This section presents an evaluation of the AGR systems waaer
ing conditions.

5.1. Audio-Based AGR System

In case of the A-AGR system, we investigated two types offest
voice source (F0) and vocal tract related (PLPs). Resulisirodd
under three types of conditions: controlled, degraded alveérae
are presented in Figure 2. As expected, the performance &&R
system decreases with increasing severity of conditio® HO is
the best feature under controlled conditions attainindepérecog-
nition. However, its performance is highly affected by sibdegra-
dation and dropped t63.0% (file accuracy) under adverse condi-
tions. It is more due to the fact that FO estimation is not sblia
noisy conditions. We analyzed performance of the PLPs vath r
spect to the number (9, 13, 19) and type (static vs. stakiita)
of cepstral coefficients included to the feature vector. \eeoved
that performance of the AGR system for the PLPs increasduttnet
number of coefficients. In the preliminary experiments perfed
on the development set, the addition of dynamic coefficisigatly
aids in performance under degraded conditidné%). This is con-
sistent with results obtained in [3]. In spite of the smalpnave-
ment, we decided to use both static and delta coefficientsrthdr
experiments. For the test set, the following gains in aayuveere
obtained1.4%, 4.2% and3.5% under controlled, degraded and ad-
verse conditions, respectively. The PLPs yielded the bsttstem
han FO under degraded and adverse conditions. This iedithat

LP features are more robust to signal degradation. The leemp
mentarity of FO and PLPs was evaluated by combining these two
features using low and high level integration (with sum Yul€he
latter method was superior to the former one under all candit
The AGR system with the high level integration preservedquer
mace of the best of the single feature systems under cadratd
adverse conditions and, the accuracy of classification masaved
by 0.7% under degraded conditions.

5.2. Vision-Based AGR System

In case of the V-AGR system, we compared two types of features

image in order to align eyes was applied. Then, each image wasigenfaces and fisherfaces. Results obtained under vaane-
cropped to a size of 64x80. The PCA was performed on face isnageions are presented in Figure 3. For both features perforenah
to compute the eigenfaces. The number of features was chiesenthe V-AGR system decreases with degradation of the sigrakexA

capture 99% of the data variations which, in this case, spoeds
to the first 116 eigenvectors. Then, through LDA, the fisteerfa
features were obtained. Due to the fact that the informatar of
the LDA features is encoded in the finst— 1 vectors, where: is
the number of classes, each image was represented usingranly
feature.

4.4. System

We used the SVM classifier with the RBF kernel, in case of multi
dimensional feature vectors, and with the linear kernekase of
one-dimensional feature vectors. The parameters of thesS(éNior
penaltyC) and the RBF kernel (variance) were estimated on the
development set. While integration of the cues was perfdrasing
unequal weighting of modalities, weights were determireethax-
imize performance of the AV-AGR system for the developmett s
The classification accuracy was used as the measure of perfice.
We report the results for: (a) a single instance, filktane accuracy

pected, the fisherfaces are superior to eigenfaces undéaoked
conditions. The difference in performance 1% (file accuracy)
was observed. However, eigenfaces are better than fisherfac
4.0% and0.7% under degraded and adverse conditions, respectively.
It may be a consequence of the mismatch between within-etass
ances that are significantly higher in the test than traisitg

5.3. Audio-Visual AGR System

For the AV-AGR system, we evaluated different combinatiofhau-

dio (FO, PLPs) and visual (eigenfaces, fisherfaces) femtiresults
obtained for the sum and product rule are presented in Fgurer

all combinations of audio and visual features, the appraased on

the summation was at least as good as the one based on thetprodu
rule. An advantage of the sum over product rule is especiiihle
when combining visual features with FO. Results for the cemb
nation approaches using equal or unequal weighting of ritaal
are provided in Figure 5. The unequal weighting of modaibet-

andimage accuracyand (b) a file, for 1.3s of voiced speech data or PE"forms the equal weighting of modalities for all combioas of

for 5 imagesfile accuracy.

features. While using unequal weighting, the audio cueainét
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